

Diretor-Geral

Ademilson Zamboni

Diretor Administrativo e Financeiro

José Machado

Diretor Científico

Martin Dias

Diretora de Comunicação

Marina Simon

Gerente Sênior de Advocacy e Estratégia

Lara Iwanicki

Gerente de Comunicação

Patrícia Bonilha

Cientista Marinha Sênior

Letícia Canton

Coordenadora Executiva

Edna Santana

Analista Administrativa e Financeira

Lúcia Silva

Analistas de Campanhas

Iran Magno

Miriam Bozzetto

Analistas de Comunicação

Déborah Gouthier

Nathalia Carvalho

Analista de Operações

Juliana Silva

Estagiários

Luis Reis

Nicolas Figueiredo

FICHA TÉCNICA

Organizador

Iran Magno

Co-autores

André S. Barreto

Danielle Regina Gomes Ribeiro-Brasil

Felipe da Silva Valente

Grace Moorhead

Ítalo Braga de Castro

Karla Renata Kaminski Andreoli

Lara Iwanicki

Maiara Menezes

Robson G. Santos

Ryan Andrades

Victor Vasques Ribeiro

Colaboradores

Mateus Mendonça e Ítalo Lima - Giral Viveiro de Projetos

Coordenação Editorial

Patrícia Bonilha

Revisão

Sérgio Maggio

Revisão Bibliográfica

Luis Reis

Seleção de imagens

Nathalia Carvalho

Projeto Gráfico e Diagramação

Duo Design

Foto da Capa:

Oceana/Enrique Talledo

DOI: 10.5281/zenodo.13931989

Dados Internacionais de Catalogação na Publicação (CIP) (Câmara Brasileira do Livro, SP, Brasil)

Fragmentos da destruição [livro eletrônico]: impactos do plástico na biodiversidade marinha brasileira / organização Iran Magno. --1. ed. -- Brasília: Oceana Brasil, 2024. PDF

Vários autores. Vários colaboradores. Bibliografia. ISBN 978-65-980818-5-0

1. Biodiversidade marinha - Conservação - Brasil

Biodiversidade marinha - Preservação 3. Oceanos
 Plásticos - Aspectos ambientais I. Magno, Iran.

24-231909 CDD-363.728

Índices para catálogo sistemático:

1. Plástico : Lixo : Poluição : Meio ambiente : Problemas sociais 363.7282

Aline Graziele Benitez - Bibliotecária - CRB-1/3129

SIG Quadra 1, Centro Empresarial Parque Brasília,

Sala 251 - 70610-410 - Brasília/DF

Telefone: +55 (61) 3247-1800

brasil@oceana.org

brasil.oceana.org

instagram.com/oceanabrasil

youtube.com/oceanabrasil

in linkedin.com/company/oceanabrasil

X twitter.com/oceanabrasil

tiktok.com/@oceanabrasil

f facebook.com/oceanabrasil

FRAGMENTOS DA DESTRUIÇÃO

IMPACTOS DO
PLÁSTICO NA
BIODIVERSIDADE
MARINHA
BRASILEIRA

RESUMO EXECUTIVO 10 Plástico: um problema sem fronteiras 15 Poluição marinha no Brasil 20 Impactos na biodiversidade marinha 24 Dilemas da interação entre resíduos e fauna 28 Dos rios e mares à mesa: peixes contaminados 32 Moluscos: sentinelas globais da contaminação por microplásticos 36

APRESENTAÇÃO

9

Monitoramento de praias e danos a aves, répteis e mamíferos marinhos 40 08 Vivendo em plástico: ameaças às tartarugas marinhas 52 09 Recomendações 55 Referências Bibliográficas 57

ANEXO 1 - METODOLOGIA

A Oceana é a maior organização internacional sem fins lucrativos dedicada exclusivamente à conservação dos oceanos. Com base na ciência, trabalhamos para recuperar a abundância dos oceanos e garantir a saúde da biodiversidade marinha por meio de mudanças nas políticas públicas de países que controlam mais de um quarto da pesca mundial. Nossas campanhas apresentam resultados efetivos, explícitos em mais de 300 vitórias contra a sobrepesca, a destruição de habitats, a poluição por petróleo e plástico e a perda de espécies ameaçadas, como tartarugas, baleias e tubarões. Um oceano saudável pode proporcionar uma refeição nutritiva de pescados todos os dias a 1 bilhão de pessoas, para sempre. Juntos, podemos proteger os oceanos e ajudar a alimentar o mundo.

66

APRESENTAÇÃO

O oceano é essencial para a vida na Terra. Regula o clima, produz metade do oxigênio que respiramos e absorve 30% das emissões de carbono, além de ser um elemento importante no ciclo da água e atuar como um grande laboratório natural, equilibrando a química do planeta.

Apesar de sua vastidão e relevância, nosso conhecimento sobre ele é muito limitado: 80% de suas águas permanecem inexploradas e mais de 90% das espécies marinhas ainda não foram catalogadas. Mesmo assim, o pouco que sabemos já é impressionante: segundo a Organização das Nações Unidas (ONU), o fundo do mar abriga entre 500 mil e 10 milhões de espécies. Essa biodiversidade não é apenas um espetáculo da natureza, ela sustenta ecossistemas, alimenta e gera renda para milhões de pessoas, incluindo aquelas que dependem da pesca e do turismo para sobreviverem.

No entanto, o oceano não está imune à influência humana. Em 2024, com quase metade da Década das Nações Unidas da Ciência Oceânica para o Desenvolvimento Sustentável percorrida, ainda estamos imersos em desafios enormes. A poluição por plástico, considerada a segunda maior ameaça ambiental ao planeta, atrás apenas da emergência climática, continua a ser uma crise urgente e parece estar longe de ser resolvida.

Para compreender a dimensão dessa problemática em nosso país, lançamos, em 2020, o relatório *Um Oceano Livre de Plástico - desafios para reduzir a poluição marinha no Brasil*. Trata-se de um estudo abrangente que analisa a produção de plásticos de uso único, os problemas na gestão de resíduos e os impactos dos microplásticos na saúde humana e ambiental. Também apresentamos caminhos para soluções, muitas delas já em curso graças às legislações adotadas em vários países, e alertamos para as falsas soluções impulsionadas

pela narrativa de uma indústria resistente a qualquer mudança. Este novo relatório, desenvolvido em parceria com cientistas e pesquisadores brasileiros, oferece uma atualização sobre os impactos da poluição plástica na fauna marinha. Além de enriquecer o debate público, esperamos que esta publicação também impulsione ações concretas para restaurar a vitalidade dos nossos oceanos.

O Brasil, mesmo sendo o maior produtor de plástico da América Latina e um dos poucos países sem uma legislação específica contra a poluição plástica, ainda tem a oportunidade de destacar-se nessa luta. A aprovação do Projeto de Lei 2524/2022, que propõe a implementação de uma Economia Circular do Plástico e já tramita no Senado Federal, é urgente e necessária. Esta proposta legislativa oferece soluções factíveis, sintonizadas com as medidas mais avançadas que existem no mundo, para enfrentarmos esse desafio e restabelecermos o equilíbrio da nossa própria saúde e a do planeta.

Boa leitura!

ADEMILSON ZAMBONIDiretor-Geral da Oceana no Brasil

ACESSE AQUI O RELATÓRIO
UM OCEANO LIVRE DE
PLÁSTICO

RESUMO EXECUTIVO

1 EM CADA 10
ANIMAIS MARINHOS
que ingeriu plástico morreu

200 ESPÉCIES MARINHAS

já foram registradas com ingestão de plástico no Brasil

9 DAS 10 ESPÉCIES DE PEIXES COMERCIAIS

mais capturadas para consumo humano no mundo já ingeriram plástico

FRAGMENTOS
DE SACOLAS E
EMBALAGENS FLEXÍVEIS

são os itens mais ingeridos por tartarugas

49 DAS 99
ESPÉCIES DE AVES,
RÉPTEIS E MAMÍFEROS

analisados pelo Projeto de Monitoramento de Praias continham plástico no estômago

DAS TARTARUGAS VERDES

ingeriram plástico; em algumas regiões do Brasil, esse índice chega a 100%

DOS PEIXES AMAZÔNICOS ANALISADOS

continham plástico ou microplástico no intestino e nas brânquias

DOS ESTÔMAGOS ANALISADOS

de aves, tartarugas e mamíferos tinham plástico O Brasil é o oitavo maior poluidor mundial de plástico, aponta o recente estudo Alocal-to-global emissions inventory of macroplastic pollution, publicado pela revista científica Nature (Cottom et al., 2024). Na América Latina, nosso país é o líder em poluição plástica. Neste relatório, a Oceana atualiza dados publicados no estudo Um Oceano Livre de Plástico (2020), e estima que o Brasil polui o oceano anualmente com cerca de 1,3 milhão de toneladas de resíduos plásticos, o que representa 8% do volume global de plásticos que chega ao mar. Nosso país ainda não possui nenhuma legislação para regular a produção de itens de uso único e não recicláveis, que totaliza cerca de 2,95 milhões de toneladas – ou 500 bilhões de itens – por ano.

Feitos para serem descartados e de pouco interesse para o mercado de reciclagem, esses itens descartáveis geram uma quantidade enorme de resíduos sólidos mal gerenciados que não são coletados nem reciclados e acabam em terra, nos rios e nos mares.

Uma vez na água, o plástico – projetado para durar centenas de anos – torna-se uma ameaça real para a vida marinha ao ser confundido com alimento por diversas espécies. Em tamanhos maiores ou fragmentos de microplásticos, a ingestão do plástico revela uma cadeia tóxica de polímeros e substâncias químicas perigosas que pode causar obstruções intestinais, perfurações de órgãos e a morte de animais.

Este relatório se concentra nos perigos do plástico para a vida marinha, reunindo as principais descobertas de pesquisas científicas sobre a fauna que habita os oceanos no Brasil. O estudo Um Oceano Livre de Plástico já havia demonstrado a extensão desse impacto, evidenciando, a partir de dados do

Projeto de Monitoramento de Praias, que 85% das espécies que ingeriram resíduos sólidos, incluindo plásticos, estão ameaçadas de extinção. Entre os animais mortos e necropsiados, 1 em cada 10 que ingeriu plástico não sobreviveu.

Após análises do problema a partir de perspectivas global e nacional, no terceiro capítulo, os pesquisadores Robson Santos e Ryan Andrades alertam para o fato de que atualmente, no Brasil, mais de 200 espécies marinhas já foram registradas com ingestão de plástico em seus estômagos. Entre elas estão tartarugas, aves, mamíferos, peixes, crustáceos, moluscos, corais e plâncton. Quando ingerido por engano, o plástico cria uma falsa sensação de saciedade, reduzindo a ingestão de alimentos e nutrientes essenciais. Esse fenômeno leva à desnutrição crônica e diminuição da imunidade. Além disso, aditivos químicos tóxicos, como ftalato e bisfenol A, utilizados para tornar os plásticos mais flexíveis e duráveis, causam danos cromossômicos, exacerbando os impactos negativos na saúde dos animais.

Estudos internacionais revelam que estamos consumindo microplásticos presentes na carne de peixes, incluindo 210 espécies de importância comercial. Globalmente, 9 das 10 espécies de peixes mais capturadas para o consumo humano apresentam ingestão de plástico. No Brasil, espécies comerciais como cioba (Lutjanus analis), dourado (Coryphaena hippurus), corvina (Micropogonias furnieri), tainha (Mugil spp.) e camarão-rosa (Penaeus brasiliensis) têm registros de ingestão de plástico.

O estudo de Maiara Menezes (**Capítulo 4**) avaliou o impacto dos detritos plásticos no comporta-

mento alimentar dos peixes herbívoros em recifes de coral. Os resultados indicam que a presença de plástico no fundo marinho reduz a alimentação desses peixes, que tendem a evitar áreas contaminadas. Isso demonstra que o impacto da poluição por plástico vai além da interação direta, como emaranhamento ou ingestão, afetando também o comportamento e o papel ecológico das espécies nos ecossistemas recifais.

Já a pesquisa de Danielle Regina Gomes Ribeiro-Brasil (Capítulo 5) encontrou microplásticos no trato gastrointestinal e nas brânquias de 98% dos peixes analisados em 14 espécies de riachos amazônicos. Polietileno, polipropileno, polietileno tereftalato, poliestireno e cloreto de polivinila representam 90% dos polímeros plásticos usados e dão origem à maioria dos microplásticos encontrados nesse ambiente.

A contaminação por microplásticos pode chegar ao corpo humano também pelo consumo de frutos do mar. A pesquisa de Ítalo Braga de Castro e Victor Vasques Ribeiro (Capítulo 6) evidencia que moluscos bivalves, como ostras e mexilhões, acumulam microplásticos e substâncias tóxicas. Cientistas já detectaram microplásticos em diversos órgãos vitais humanos, como cérebro, pulmão, coração e testículos, além de estarem presentes também no sangue e no leite materno.

Para avaliar os impactos da poluição em aves, répteis e mamíferos marinhos (**Capítulo 7**), a equipe do pesquisador André Barreto utilizou as bases de dados dos Projetos de Monitoramento de Praias da Bacia de Santos (PMP-BS) e da Bacia de Campos (PMP-BC), que analisaram o conteúdo estomacal de 12.280 animais mortos. Foram

encontrados plásticos em 2.666 casos (22%), em 49 das 99 espécies estudadas (50%). Entre esses animais, mamíferos apresentaram a menor incidência de resíduos sólidos, com 33,9%, enquanto aves e tartarugas mostraram níveis muito mais altos de contaminação, com 77,9% e 82,2%, respectivamente. O plástico foi o tipo de resíduo mais comum em todas as categorias, representando 76,9% dos casos, independentemente de serem aves, mamíferos ou tartarugas.

Por fim, o outro estudo de Robson G. Santos (Capítulo 8) sobre as tartarugas-verdes do Brasil revelou que cada grama de plástico ingerido aumenta em até 450% a probabilidade desses animais ficarem abaixo do peso ou sofrerem definhamento. Todas as cinco espécies de tartarugas marinhas do Brasil - tartaruga-verde (Chelonia mydas), tartaruga-cabeçuda (Caretta caretta), tartaruga-de-pente (Eretmochelys imbricata), tartaruga-oliva (Lepidochelys olivacea) e tartaruga-de-couro (Dermochelys coriacea) têm registros de ingestão de plástico. Algumas dessas espécies estão ameaçadas de extinção. A pesquisa nacional revelou que plástico foi encontrado em 70% dos mais de 250 animais estudados, chegando a 100% em algumas regiões.

A devastação do plástico na vida marinha segue em grandes proporções e não resta outra saída a não ser a diminuição do alto volume de resíduos despejado continuamente no mar. Somente com a implementação de uma legislação baseada na Economia Circular do Plástico poderemos mitigar o que hoje, mesmo com poucas pesquisas disponíveis, já constatamos ser uma tragédia para a biodiversidade marinha.

PLÁSTICO: UM PROBLEMA SEM FRONTEIRAS

Grace Moorhead¹

O plástico é o resíduo mais abundante nos oceanos e afeta toda a cadeia alimentar marinha, desde o plâncton microscópico até os maiores cetáceos. Os primeiros relatos de plástico no ambiente marinho apareceram há meio século (Carpenter et al., 1972), e essa presença aumentou dez vezes desde 1980 (López-Martínez et al., 2021). A quantidade de plástico nos nossos mares continua crescendo de forma alarmante. Aproximadamente 15 milhões de toneladas de plástico são despejadas no oceano a cada ano, o que equivale a dois caminhões de lixo por minuto (Forrest et al., 2019). Considerando que esse material pode durar centenas de anos, é possível afirmar que a maior parte do plástico já produzido ainda persiste no ambiente marinho (Rotjan et al., 2019).

Os plásticos são usados na fabricação de uma vasta gama de produtos, desde itens duráveis até descartáveis, como embalagens, canudos, garfos, facas, colheres, garrafas e sacolas, dentre muitos outros. No entanto, o problema vai muito além dos itens visíveis. Uma vez no oceano, o plástico flutua na superfície e na coluna d'água ou afunda. À medida que se desgasta pela luz do sol ou pela ação da água salgada, ele se fragmenta em pedaços menores, tornando-se mais acessível e disponível para a ingestão pela fauna marinha (Kooi; van Nes; Scheffer, 2017).

Estima-se que existem, pelo menos, 170 trilhões de partículas de plástico no oceano (Eriksen et al., 2023), das quais 94% estão abaixo da superfície (Eunomia, 2016). A maior parte do plástico que está disperso consiste em pedaços pequenos demais para serem coletados por limpezas de praia ou em alto mar. A perspectiva é que esse volume aumente substancialmente se não forem tomadas medidas efetivas em todo o mundo para reduzir a produção do plástico.

À medida que o plástico se acumula nos oceanos, o número de animais afetados cresce exponencialmente. Santos et al. (2021), em análise recente, apontam que a ingestão de plásticos já foi registrada em 1.288 espécies marinhas e em outras 277 espécies em ambientes terrestres ou de água doce - sendo os dois últimos grupos ainda pouco estudados. Já o estudo de Kühn e van Fraeneker (2020). constatou que os albatrozes de Laysan (Phoebastria immutabilis) têm mais de 90% da população impactada pela ingestão repetida de plástico. No Brasil, um estudo revelou que quase um terço das aves analisadas havia consumido detritos, sendo 97% plástico (Vanstreels et al., 2021).

Os plásticos representam uma ameaça multifacetada para a vida marinha. Além da ingestão, que pode causar fome, desnutrição e morte, os animais marinhos enfrentam riscos de enredamento, contaminação química e destruição de habitat. Feitos de polímeros sintéticos e frequentemente contendo aditivos químicos para melhorar seu desempenho (Laskar e Kumar, 2019), os plásticos estão associados a mais de 4 mil produtos químicos (Groh et al., 2019), muitos dos quais são prejudiciais tanto para a saúde marinha como para a humana, como o bisfenol-A (BPA) e o di-(2-etilhexil) ftalato (DEHP) (Muncke, 2021).

A ingestão de plástico é uma das principais formas de dano para a vida marinha. Espécies como tartarugas, pássaros, peixes, crustáceos, moluscos e plâncton confundem plástico com alimento. Microplásticos, especialmente fibras transparentes, são comumente ingeridos pela megafauna marinha, mas as espécies têm preferências distintas. Repetidamente, tartarugas marinhas ingerem polietileno de baixa densidade (PEBD), que compõe as sacolas e embalagens, os cetáceos ingerem poliamida (PA), enquanto os peixes engolem poliéster, fibra muito comum em roupas (López-Martínez et al., 2021).

Em animais marinhos de grande porte, como peixes (incluindo tubarões), mamíferos, aves e tartarugas, a ingestão de plástico pode levar ao bloqueio intestinal e à perfuração de órgãos, muitas vezes com consequências fatais. Um estudo global revelou que centenas de espécies de peixes marinhos já ingeriram plástico, incluindo 210 espécies de relevância comercial para os seres humanos. É alarmante constatar que cerca de 26% de todos os peixes analisados apresentaram plástico em seus sistemas – este dado mais que dobrou na última década e continua a crescer em uma média de 2,5% ao ano (Savoca et al., 2021).

Mesmo que o plástico não cause danos letais imediatos, seus efeitos subletais são igualmente preocupantes. Quando ingerido, o plástico pode acumular-se no organismo e criar uma falsa sensação de saciedade, ocupando espaço no estômago e nos intestinos. Isso reduz tanto o consumo real de alimentos quanto a absorção de nutrientes essenciais (Santos et al., 2020). Como resultado, os animais marinhos podem sofrer por desnutrição crônica, diluição alimentar prolongada e redução da imunidade, comprometendo seriamente sua saúde e a capacidade de sobrevivência.

Um estudo realizado no Brasil analisou a ingestão de plástico por tartarugas-verdes (Chelonia mydas) juvenis em recifes tropicais e descobriu que, quanto mais plástico elas ingeriam, menos se envolviam em seus comportamentos naturais de forrageamento (Santos et al., 2020). A ingestão de plástico já foi registrada em todas as espécies de tartarugas marinhas (Duncan et al., 2019), e todas estão classificadas como vulneráveis, em perigo ou criticamente em perigo na Lista Vermelha da União Internacional para a Conservação da Natureza (UICN), incluindo a tartaruga-de-couro (Dermochelys coriacea) e a C. mydas. As tartarugas estão entre as espécies mais suscetíveis à ingestão de plástico devido à maior probabilidade de exposição a esse material, à resiliência populacional e à sensibilidade da espécie (Murphy et al., 2024).

Os animais marinhos não estão apenas ingerindo resíduos plásticos, mas também se enredando neles. Eles podem ficar presos em cordas, linhas, redes, materiais fibrosos e fitas de arquear de polipropileno (PP) (Senko et al., 2020). Uma revisão global revelou que 112 espécies de aves marinhas, 22 de focas e 22 de baleias já se enredaram em detritos plásticos (Kühn e van Franeker, 2020). Equipamentos de pesca perdidos, que representam cerca de 10% da poluição marinha por plástico,

são especialmente perigosos, pois se movem pelas correntes oceânicas, ameaçando a vida marinha por onde passam (Watt et al., 2021). Feitos para durar, esses materiais podem causar ferimentos graves em qualquer animal que se enrede neles. As consequências incluem lacerações, constrição, cicatrizes profundas, dificuldades respiratórias, perda de membros e, em casos extremos, uma morte lenta e dolorosa (Senko et al., 2020).

Nem os locais mais remotos da Terra estão imunes à poluição por plásticos, incluindo os recifes de coral quase intocados dos atóis desabitados do Pacífico Central (Pinheiro et al., 2023) e o Grande Buraco Azul de Belize, o poço submarino mais profundo do mundo (Vandette, 2019). Por ser leve, o plástico é facilmente transportado pelas correntes oceânicas, ficando preso e enredado em frágeis sistemas de recifes de coral. Na região da Ásia-Pacífico, estima-se que cerca de 11,1 bilhões de objetos plásticos estejam enredados em recifes de coral, e esse número deve aumentar 40% até 2025 (Lamb et al., 2018).

Os corais enfrentam um risco significativamente maior de contrair doenças devido à exposição à poluição por plásticos, o que compromete suas funções biológicas. Estudos indicam que, ao entrarem em contato com fragmentos plásticos, a probabilidade de os corais desenvolverem doenças aumenta de 4% para 89% (Lamb et al., 2018).

Além disso, o plástico está se integrando às formações geológicas, criando o que alguns chamam de "plastistones" - rochas plásticas formadas quando plástico e pedaços de pedras pré-existentes se solidificam juntos (Wang e Hou, 2023). Os polímeros mais comuns nessas plastistones incluem polietileno (PE), politereftalato de etileno (PET) e polipropileno (PP), originados principalmente de embalagens descartáveis e redes de pesca abandonadas (Wang e Hou, 2023).

Embora sejam necessárias mais pesquisas para avaliar os impactos plenamente, já se sabe que as plastistones liberam quantidades significativas de micro e nanoplásticos, alterando comunidades microbianas e os ecossistemas ao redor (Wang e Hou, 2023). Essas rochas plásticas já foram encontradas em onze países de cinco continentes, incluindo China, Itália, Japão, Portugal e Brasil (Pathak e Ist, 2023). O surgimento dessas formações evidencia a complexidade e a amplitude do problema do plástico, mostrando como ele continua a modificar o planeta e a ameaçar a biodiversidade.

As ameaças não se limitam aos plásticos visíveis. Os microplásticos são tão pequenos que até o zooplâncton - uma base crucial na cadeia alimentar marinha - pode ingeri-los. Isso abre uma rota perigosa para a entrada de plástico na cadeia alimentar (Botterell et al., 2019). À medida que o plástico é consumido por organismos menores, ele pode ascender na cadeia trófica, contaminando predadores que ingerem presas que se alimentaram de partículas plásticas.

Corais também ingerem microplásticos, e estudos revelam que eles, surpreendentemente, preferem pellets de polipropileno a seus alimentos naturais. Essa ingestão pode causar diversos danos, incluindo distúrbios alimentares, produção excessiva de muco e alterações na expressão genética (Corinaldesi et al., 2021). Além disso, a presença de microplásticos pode reduzir as taxas de crescimento esquelético (Chapron et al., 2018) e comprometer a função imunológica dos corais (Tang et al., 2018).

Os microplásticos são compostos principalmente por polímeros como polietileno (PE), polipropileno (PP) e poliestireno (PS), além de conterem aditivos químicos, como plastificantes, ftalatos, alquilfenóis e bisfenol-A (BPA). Também foram encontrados aditivos inorgânicos, como nanopartículas de bário, enxofre, zinco e dióxido de titânio (Bouwmeester et al., 2015). Embora esses aditivos confiram propriedades únicas aos plásticos, eles podem representar sérios riscos para o futuro dos ecossistemas marinhos.

A contínua fragmentação e degradação do plástico na água libera aditivos químicos previamente ligados aos polímeros, que podem contaminar a vida marinha ao se infiltrarem na água e no ambiente circundante. Os efeitos desses resíduos variam de acordo com os produtos químicos liberados e produzem reações específicas em diferentes espécies. Um estudo sobre o desenvolvimento embrionário do ouriço-do-mar revelou anomalias nas células esqueléticas, neurais e imunológicas após exposição ao lixiviado de policloreto de vinila (PVC) (Paganos et al., 2023).

O plástico também pode atuar como vetor de doenças, bem como de patógenos causadores do branqueamento de tecidos e corais, como Vibrionaceae, Rhodobacteraceae e Flavobacteraceae (Feng et al., 2020). No entanto, ainda são necessárias mais pesquisas para compreender completamente como esses produtos químicos e as doenças se espalham e afetam a cadeia alimentar marinha como um todo.

Não são apenas os animais marinhos que ingerem partículas de plástico. Os seres humanos também consomem microplásticos, já detectados em alimentos como sal, carne, mel, cerveja, pescados e frutos do mar (van der Veen et al., 2022 & van Raamsdonk et al., 2020). É crescente o número de estudos científicos que registraram a presença de microplástico em órgãos vitais humanos, como cérebro, coração e pulmão. Há uma necessidade urgente de pesquisas que investiguem a bioacumulação e bioamplificação de micro e nanoplásticos nas redes alimentares, assim como a capacidade desses plásticos de penetrar na corrente sanguínea ou em outros órgãos dos organismos.

A crise ambiental causada pelo plástico nos oceanos e seu impacto na biodiversidade global são alarmantes. Nos próximos capítulos, examinaremos de forma aprofundada como essa poluição está afetando a fauna marinha no Brasil, destacando os efeitos específicos e as implicações para o ecossistema marinho local.

02POLUIÇÃO MARINHA NO BRASIL

Lara Iwanicki²

Um estudo brasileiro de Andrades et al., 2020) realizou o primeiro levantamento sistemático do lixo antropogênico em 44 praias brasileiras distribuídas ao longo de toda a costa. Os resultados desse estudo revelam que 70% de todos os itens coletados durante as limpezas de praia eram plásticos, com embalagens de alimentos sendo os itens mais frequentes (Andrades et al., 2020).

Dados adicionais do Ministério do Meio Ambiente e da Mudança do Clima (MMA) corroboram essas informações, apontando o plástico como o item mais comum nas limpezas de praia (46%), seguido por bitucas de cigarros (36%). Os 18% restantes são compostos por vidro, madeira, papel, borracha e outros materiais.

Além das embalagens, outro item frequentemente encontrado são as garrafas de bebidas. A Oceana analisou dados da *Global Data*, de 2018, sobre vendas de bebidas não alcoólicas, para 76 países costeiros diferentes, para determinar a poluição de garrafas PET por país. Nossa análise constatou que, globalmente, em 2018, um valor entre 21 e 34 bilhões de garrafas PET de um litro geradas pela indústria de bebidas não alcoólicas chegou ao oceano, representando um volume entre 706 mil e 1,1 milhão de toneladas de resíduos de garrafas plásticas.

Os resíduos plásticos chegam ao mar através de diversas vias, sendo a maior parte proveniente de fontes terrestres, como rios e estuários. O escoamento através das bacias hidrográficas é, portanto, fundamental para o transporte desses resíduos desde o interior do país até o oceano (Eunomia, 2016), que pode ocorrer das seguintes formas:

Sistema de drenagem e águas pluviais: O resíduo plástico descartado diretamente nas ruas, praias e estradas é levado pelo sistema de drenagem de água e esgoto e conduzido até o mar por um emissário ou pela própria rede de esgoto.

Bacias hidrográficas: Os córregos e rios são importantes carregadores de resíduos plásticos porque, frequentemente, atravessam áreas urbanas e rurais onde grandes quantidades de resíduos são geradas, transportando-os até os oceanos. Em áreas costeiras, como os manguezais, esses resíduos podem ser levados pelo movimento da maré.

Fatores naturais: A ação do vento e das chuvas pode transportar o plástico disposto em lixões para córregos ou rios próximos. Enchentes e tempestades podem aumentar significativamente a quantidade de resíduos plásticos que os rios carregam das áreas urbanas e rurais e que, posteriormente, podem desembocar no oceano.

Despejo direto de resíduos no ambiente: Em algumas regiões, a prática de despejo direto de resíduos em córregos, rios ou no ambiente ainda é bastante comum. Muitas vezes, devido à falta de serviço de coleta de lixo adequado. O turismo e as atividades recreativas em praias e áreas costeiras também contribuem substancialmente para a poluição plástica. Resíduos deixados porvisitantes, como garrafas plásticas, sacolas e embalagens, são facilmente levados pelo vento ou pelas marés e chegam nos oceanos.

Perdas no processo produtivo: Produtos plásticos transformados podem ser descartados inadequadamente ou se perder durante o processo de produção e o transporte.

FIGURA 1 - Principais fontes e meios de transporte do resíduo plástico de origem terrestre até o mar.

COMO O PLÁSTICO PODE CHEGAR NO MAR?

Segundo o censo de 2022 do Instituto Brasileiro de Geografia e Estatística (IBGE, 2024), mais da metade da população brasileira, aproximadamente 111,2 milhões de pessoas, reside na faixa litorânea do país (54,8%). O Brasil, com a maior rede hidrográfica do planeta (ANA, 2017) com 12 bacias hidrográficas, incluindo a vasta Bacia Amazônica, possui uma geografia que intensifica o transporte de resíduos plásticos do interior do país para o Oceano Atlântico (Lebreton et al., 2017).

Um estudo publicado na revista *Science*, intitulado *Plastic waste inputs from land into the ocean* (Jambeck et al, 2015), estimou que, em 2010, o Brasil ocupava a 16ª posição entre os 20 países com maior volume de resíduos plásticos mal geridos. Com base em dados atualizados de 2022 e aplicando a mesma metodologia, estima-se que o Brasil despeje nos oceanos ao menos 1,3 milhão de toneladas de resíduos plásticos anualmente (FIGURA 2)³. Isso repre-

senta 8% do volume de plásticos que chega ao mar todos os anos.

Essa metodologia considera apenas a população que vive até 150 km da costa. Como afirmamos, a literatura científica já evidenciou o papel das bacias hidrográficas no transporte de resíduos até o mar (Lebreton et al., 2017). Assim, é possível pontuar que cidades do interior, mesmo distantes da costa, também contribuem significativamente para a poluição marinha através das bacias hidrográficas, sugerindo que o volume de plástico que chega ao mar é ainda maior.

Os produtos e as embalagens plásticas descartáveis estão no centro da discussão sobre a poluição nos oceanos em razão das incontestáveis evidências de que compõem a maior parte do lixo marinho. De forma consistente, as limpezas de praia em todo o mundo demonstram que itens descartáveis como copos, sacolas, canudos e embalagens são os maiores responsáveis pela poluição marinha por plásticos.

^{3.} Mais informações sobre a metodologia de cálculo podem ser encontradas no Anexo 1, na página 66

FIGURA 2 - Quantidade de resíduos plásticos que o Brasil despeja no oceano anualmente e percentual de itens plásticos encontrados em limpezas de praia.

RESPONSABILIDADE
DO BRASIL NA POLUIÇÃO
MARINHA POR PLÁSTICO

1,3 milhão de toneladas de resíduo de plástico por ano

70%
dos itens encontrados
em limpezas de praias:
plásticos

Fonte: Andrades et al., (2020) e Oceana, com metodologia de Jambeck JR et al., (2015).

OCEANA

03 IMPACTOS NA BIODIVERSIDADE MARINHA

Robson G. Santos⁴ e Ryan Andrades⁵

A história do plástico no ambiente marinho começou a chamar atenção a partir de relatos anedóticos sobre o emaranhamento de espécies em itens de pesca e a presença de plásticos em praias remotas de ilhas isoladas. A transição da percepção do problema como meramente "estético" para um problema ambiental significativo ocorreu por volta dos anos 1970. Hoje, a poluição por plástico é reconhecida como uma das maiores ameaças aos ecossistemas marinhos, e está presente tanto em praias e recifes de coral isolados como nas partes mais profundas do oceano.

Apesar de sua onipresença nos ambientes marinhos, o tipo de resíduo plástico preponderante varia entre os diferentes ecossistemas. Em áreas costeiras, há uma predominância de itens relacionados à alimentação, especialmente a vinculada ao mercado de comida para viagem, como sacolas, embalagens de alimentos, talheres descartáveis e garrafas (Morales-Caselles et al., 2021).

Em águas oceânicas, prevalecem itens relacionados à pesca, como linhas e cabos; enquanto no mar profundo, sacos e garrafas são mais comuns. No Brasil, o plástico é o principal poluente encontrado nas praias, independentemente da região geográfica. Itens como canudos, embalagens de doces, copos descartáveis, sacolas e materiais de pesca são os fragmentos plásticos encontrados com mais frequência ao longo do litoral (Andrades et al., 2020).

Outro item preocupante é a bituca de cigarro, segundo resíduo mais encontrado nas praias. Composta principalmente por acetato de celulose, muitas vezes a bituca é considerada um bioplástico. No entanto, durante o processo industrial de fabricação dos filtros, ela se torna um material sintético devido à adição de plastificantes. Portanto, o uso e o descarte de bitucas de cigarro no meio ambiente apresentam os mesmos desafios e impactos ambientais que os plásticos descartáveis (Andrades et al., 2020).

Atualmente, o principal fator que contribui para a poluição nas praias brasileiras, seja por macro ou microplásticos, é a proximidade dessas praias das desembocaduras de grandes rios. Os resíduos sólidos despejados nos corpos d'água são transportados ao longo das bacias hidrográficas até desaguarem no mar. Outros fatores que também influenciam a poluição das praias incluem o turismo e a proximidade com centros urbanos (Andrades et al., 2020), evidenciando a clara conexão entre o consumo de plástico em nosso cotidiano e o acúmulo desse material nos ecossistemas marinhos. Embora os oceanos recebam grande visibilidade nas discussões sobre poluição plástica, hoje sabemos que a onipresença desse material também se manifesta em ambientes de água doce, terrestres e até mesmo na atmosfera.

^{4.} Laboratório de Ecologia e Conservação no Antropoceno, Universidade Federal de Alagoas (Ufal)

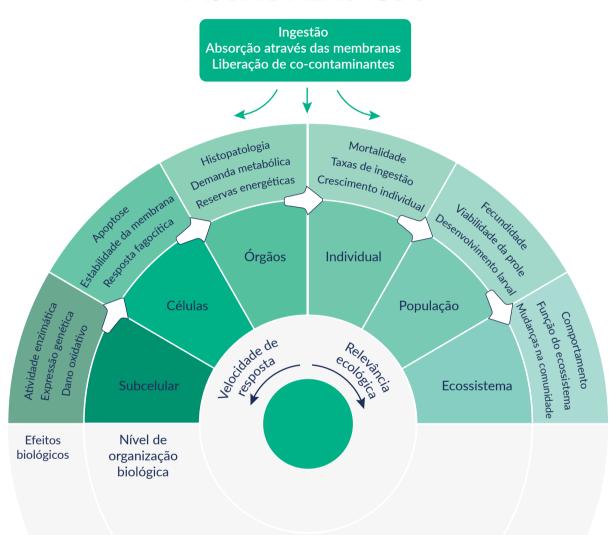
^{5.} Departamento de Oceanografia e Ecologia, Universidade Federal do Espírito Santo (UFES)

Alguns rios apresentam concentrações de microplásticos que superam em várias ordens de magnitude as encontradas em ecossistemas marinhos (Windsor et al., 2019). Os solos, especialmente os agrícolas, também acumulam grandes quantidades de microplásticos (Machado et al., 2018), e toneladas de plástico estão circulando na atmosfera. Além desse amplo acúmulo no ambiente, partículas de plástico já foram detectadas em diversos órgãos humanos vitais, como coração, cérebro e pulmão.

Biodiversidade

No Brasil, já identificamos a ingestão de plástico em mais de 200 espécies marinhas. Esse problema está amplamente distribuído em diversas teias alimentares aquáticas, afetando praticamente todos os níveis dessas teias: rios, lagos, regiões oceânicas e recifes de coral. Animais com diferentes estratégias alimentares estão consumindo plástico, desde espécies na base da cadeia, como pequenos invertebrados herbívoros, até predadores de topo, como tubarões. Essa ampla disseminação do plástico nas teias tróficas sugere que muitas outras espécies podem estar ingerindo plástico indiretamente através de suas presas (Santos et al., 2021).

Sob uma perspectiva socioeconômica e de saúde humana, constata-se que diversas espécies de peixes e invertebrados de importância comercial estão ingerindo plástico (Santos et al., 2021). No entanto, o plástico não é o único fator que ameaça a biodiversidade (Lima et al., 2021; Urbanski et al., 2020) e seu impacto sobre as espécies, frequentemente, não é incluído nas classificações de ameaça de extinção, apesar de ser um poluente com efeitos significativos. A ingestão de plástico por espécies atualmente ameaçadas de extinção, como a tartaruga-de-couro (*Dermochelys coriacea*) e o peixe-boi-marinho (*Trichechus manatus*), dentre outras, contribui para a intensificação da crise da biodiversidade.


Os impactos da ingestão de plástico podem afetar diferentes níveis de organização biológica (Galloway et al., 2017). Partículas de nano e microplástico têm a capacidade de atravessar barreiras celulares, prejudicando o funcionamento de células e tecidos. Os efeitos negativos da ingestão de plástico no nível individual são variados e incluem redução das reservas energéticas, diminuição do crescimento, comprometimento da capacidade reprodutiva, alterações comportamentais e até mesmo morte (Bucci e Rochman, 2020).

No nível populacional, os efeitos são mais complexos de avaliar, mas já há indícios de que a ingestão de plástico pode provocar declínios populacionais, mudanças nas comunidades e, consequentemente, alterações nas funções dos ecossistemas.

Nove das dez espécies de peixes mais capturadas para consumo humano no mundo já têm registro de ingestão de plástico. No Brasil, o cenário é semelhante, com registros de ingestão de plástico por espécies marinhas com relevante valor comercial como a cioba (Lutjanus analis), o dourado (Coryphaena hippurus), a corvina (Micropogonias furnieri), a tainha (Mugil spp.) (Monteiro et al., 2022) e o camarão-rosa (Penaeus brasiliensis (De Carvalho et al., 2023)), dentre outras. Essa realidade não é diferente para as espécies que habitam os rios brasileiros. Peixes de alto valor comercial, como o curimbatá (Prochilodus lineatus), também apresentam registros de ingestão de plástico.

FIGURA 3 - Esquema simplificado ilustrando os potenciais impactos da exposição a microplásticos em diferentes níveis sucessivos de organização biológica (Adaptado de Galloway et al., 2017).

MICROPLÁSTICO

04 DILEMAS DA INTERAÇÃO ENTRE RESÍDUOS E FAUNA

Maiara Menezes⁶

Resíduos plásticos já são encontrados em praticamente todos os habitats terrestres (Free et al., 2014), tornando inevitável sua interação com a biodiversidade. As consequências biológicas dessa interação são diversas e os riscos à saúde estão associados a fatores como grau de exposição (dose e duração), forma do resíduo, tipo de polímero e, principalmente, tamanho do fragmento ou partícula (Ozturk e Altinok, 2020).

De maneira geral, quanto menor o tamanho do plástico, maior é a sua biodisponibilidade. Por exemplo, itens grandes, da ordem de mega (> 1m) e macroplásticos (1m - 2,5cm), só devem afetar grandes animais, como baleias, golfinhos, tartarugas-marinhas, e outros animais da mega e macrofauna. Essa interação geralmente resulta no emaranhamento dos indivíduos (Blettler and Mitchell, 2021), dificultando sua capacidade de se locomover, de fugir de predadores e de buscar alimento, o que pode resultar na morte por sufocamento (Gall and Thompson, 2015) ou inanição, quando o animal é incapaz de se alimentar e absorver nutrientes (Galloway et al., 2017; Mascarenhas et al., 2004; Erikson and Burton, 2003).

Itens plásticos de tamanho mediano, conhecidos como mesoplásticos (2,5 cm - 5 mm), são frequentemente ingeridos por grandes grupos de animais, incluindo aves marinhas (Mallory et al., 2008), peixes e representantes da macro e mesofauna.

Resíduos menores, na faixa de microplásticos $(5\,\text{mm}-1\,\mu\text{m})$ ou nanopartículas $(<1\,\mu\text{m})$, podem ser facilmente consumidos por praticamente qualquer grupo animal, incluindo organismos microscópicos como o plâncton (Cole, 2014). Essa ingestão pode ocorrer passivamente, pelo fluxo de água, ou ativamente, quando o microplástico é confundido com alimento (Bucci et al., 2020; Ozturk e Altinok, 2020; Xu et al., 2020). A distinção entre plástico e alimento pode ser especialmente difícil quando a superfície plástica está colonizada por biofilmes microbianos, que emitem sinais visuais e olfativos atraentes para a biota aquática, aumentando a probabilidade de ingestão (Zettler et al., 2013; Savoca et al., 2017).

Além de influenciar a biodisponibilidade, o tamanho da partícula também afeta o potencial de danos à saúde, sendo que partículas menores tendem a ser mais nocivas (MacLeod et al., 2021). Uma vez ingerida, uma partícula plástica pode passar naturalmente pelo trato digestivo e ser eliminada com as fezes ou ficar retida no trato, provocando alterações físicas e químicas no organismo. Partículas na faixa de nanoplástico podem até ser absorvidas pelo tecido intestinal e translocadas para outros órgãos, resultando em efeitos letais e sub-letais (Anbumani e Kakkar, 2018).

As evidências existentes indicam que a ingestão de microplásticos pode causar uma ampla gama de efeitos, incluindo lesões físicas (Ding et al., 2018; Gall e Thompson, 2015; Zhang et al., 2021),

^{6.} Universidade Federal do Rio Grande do Norte (UFRN) e Oceânica- Pesquisa, Educação e Conservação

danos neurológicos e hepáticos (Cheng et al., 2022; Rochman et al., 2013; Zeng et al., 2018; Zhao et al., 2020), estresse oxidativo (Chen et al., 2017) e alterações na estequiometria da biomassa, como a relação C:N (Ouyang et al., 2021). Além disso, pode levar a distúrbios sistêmicos, como desequilíbrio da microbiota intestinal e alterações imunológicas, bem como a efeitos celulares e moleculares, como modificações no metabolismo energético, na atividade enzimática e na expressão genética (Ockenden et al., 2021).

Uma resposta comum à exposição a microplásticos, amplamente observada em peixes e moluscos, é a indução de danos cromossômicos, frequentemente associada à instabilidade genética (Gutiérrez et al., 2015). Esses danos genéticos podem ser avaliados pela formação de micronúcleos nas células sanguíneas de animais contaminados (Bolognesi e Cirillo, 2014), frequentemente resultantes da ação de aditivos químicos tóxicos, como ftalatos e bisfenol A. Embora esses compostos, que desregulam o sistema endócrino, sejam adicionados aos plásticos para melhorar sua flexibilidade, resistência e durabilidade, eles podem ser liberados no ambiente durante a degradação do plástico (MacLeod et al., 2021; Oehlmann et al., 2009). Além disso, os plásticos podem se associar a contaminantes no ambiente, uma vez que os polímeros plásticos se ligam facilmente a essas moléculas (Bhuyan, 2022; Franzellitti et al., 2019; Prokić et al., 2019). Adicionalmente, os microplásticos também podem adsorver biotoxinas, como as produzidas por cianobactérias, servindo como uma rota de contaminação para diversos organismos (Pestana et al., 2021).

A poluição por plástico impacta não apenas a fisiologia das espécies, mas também processos ecológicos cruciais para a regulação climática. Por exemplo, Wieczorek et al. (2019) demonstraram que o microplástico ingerido pelo plâncton marinho altera as propriedades físicas da matéria orgânica particulada excretada - especialmente o tamanho, a densidade e a taxa de sedimentação das fezes. Essa alteração reduz a eficiência do sequestro de carbono no fundo do oceano, comprometendo a bomba biológica, um processo fundamental de armazenamento de carbono que contribui para a regulação do clima no planeta.

Para compreender os impactos ecológicos potenciais do plástico no ambiente, é crucial analisar como esse material pode influenciar as características ecológicas das espécies, o que está diretamente relacionado às funções que desempenham na natureza. Nesse contexto, pesquisadores do Laboratório de Ecologia Aquática (LEAq) e do Labo-

ratório de Ecologia Marinha (Lecom) da Universidade Federal do Rio Grande do Norte (UFRN) realizaram um experimento na Área de Proteção Ambiental Recifes de Corais (Aparc), em Maracajaú (RN) (Menezes et al., 2022). O estudo investigou se a presença de detritos plásticos no substrato recifal afetaria o comportamento alimentar dos peixes herbívoros que se alimentam no bentos (fundo do mar).

Os herbívoros desempenham um papel crucial na transferência de matéria e energia da base da cadeia trófica para níveis superiores, além de mediar processos importantes para a manutenção dos ecossistemas recifais, como a competição entre algas e corais (Cebrian, 2004; Poore et al., 2012). O estudo testou três hipóteses: (1) os peixes bentônicos interagem ou se alimentam de detritos plásticos no bentos dos recifes; (2) a presença de biofilme em detritos plásticos intensifica essa interação; e (3) a pressão de alimentação sobre o bentos é reduzida quando os peixes confundem o plástico com alimento ou o evitam como um corpo estranho, deslocando-se para outras áreas.

Para testar essas hipóteses, os pesquisadores utilizaram câmeras subaquáticas para registrar o comportamento de forrageio dos peixes em áreas livres de plástico, em áreas com plástico virgem e em áreas com plástico coberto por biofilme (detalhes em Menezes et al., 2022). Os resultados mostraram que a presença de plástico reduz a alimentação dos peixes recifais, com menos mordidas registradas no bentos em áreas contendo resíduos plásticos. Além disso, os peixes raramente interagiram com os plásticos, mesmo quando cobertos por biofilme, indicando que não associaram o plástico com alimento.

Esses resultados sugerem que o plástico altera o comportamento alimentar dos peixes, levando-os a evitar áreas com detritos plásticos. Isso demonstra que o impacto do plástico nos oceanos vai além da interação direta, como emaranhamento ou ingestão, afetando também o comportamento e o papel ecológico das espécies, especialmente no caso da herbivoria.

Diante dessa evidência científica sobre os efeitos negativos do plástico na saúde dos organismos aquáticos, é urgente que novas e mais eficazes medidas sejam adotadas para combater e mitigar a poluição por plásticos nos oceanos, rios, lagos e em outros ecossistemas aquáticos. A sociedade como um todo deve estar envolvida e engajada para garantir a saúde dos nossos ecossistemas e a segurança alimentar de todos.

OCEANA

05 DOS RIOS E MARES À MESA: PEIXES CONTAMINADOS

Danielle Regina Gomes Ribeiro-Brasil⁷

A presença de plásticos nos ambientes aquáticos transformou-se em uma das maiores ameaças emergentes à saúde dos ecossistemas e das espécies que neles habitam. Peixes podem ingerir resíduos plásticos presentes no ambiente aquático tanto de forma intencional como incidental (Ribeiro-Brasil et al., 2020). A ingestão intencional ocorre devido ao sabor atrativo do plástico, que resulta da formação de biofilmes na sua superfície (Amaral-Zettler et al., 2020; Barros & Seena, 2021). Já a ingestão acidental acontece quando os peixes confundem o plástico com presas naturais (Immerschitt & Martens, 2020).

Essa ingestão pode ser exacerbada em ecossistemas em que a fauna depende de recursos provenientes de florestas ripárias, situadas ao longo das margens de rios, lagos e outros corpos d'água (Neres-Lima et al., 2017). Em riachos, especialmente em áreas onde a vegetação foi removida pela urbanização, o transporte de resíduos sólidos para os corpos d'água é facilitado (Brejão et al., 2013; Garcia et al., 2020; Peters & Bratton, 2016; Roy et al., 2005). Os riachos trocam material com o ambiente terrestre, incluindo nutrientes provenientes da vegetação ciliar, que servem como base trófica para os peixes (Catarino & Zuanon, 2010; B. da S. Prudente et al., 2018; Prudente et al., 2017).

Além de sua importância ecológica, os peixes desempenham papéis críticos na dispersão de

sementes e no controle de populações de insetos transmissores de doenças, como dengue, chikungunya e malária (Catarino & Zuanon, 2010; Garcés-Ordóñez et al., 2020; McNeish et al., 2018; Roch et al., 2020; Su et al., 2019). Portanto, a conservação dos peixes de riachos e a compreensão da contaminação por resíduos plásticos são fundamentais para a preservação dos ecossistemas locais.

Em um estudo com peixes de riachos amazônicos, foram analisados os órgãos (trato gastrointestinal e brânquias) de 68 indivíduos, representando 14 espécies distribuídas em 10 famílias e ordens, coletadas de 12 riachos (igarapés e córregos). Microplásticos foram encontrados no trato gastrointestinal e nas brânquias de 67 (98%) dos 68 indivíduos analisados. As partículas estavam ausentes em apenas um indivíduo, o pequeno bagre Mastiglanis cf. asopos. No total, foram registradas 383 partículas plásticas, das quais 201 estavam no trato gastrointestinal e 182 nas brânquias. A média foi de $5,6\pm3,8$ partículas por indivíduo, com uma média de $3,0\pm2,3$ partículas no trato gastrointestinal e $2,7\pm3,0$ nas brânquias (TABELA 1).

O estudo de Ribeiro-Brasil et al. (2020) revela que os peixes de riachos são particularmente suscetíveis à contaminação por microplásticos, um fator intimamente ligado ao comportamento dessas espécies. Peixes que habitam ambientes com alta movimentação de sedimentos e que se movem

^{7.} Laboratório de Ecologia e Conservação de Ecossistemas Aquáticos (Lecea), Instituto de Ciências Biológicas e da Saúde (ICBS), Universidade Federal de Mato Grosso (UFMT), Campus Universitário do Araguaia (CUA)

constantemente nos riachos são mais vulneráveis do que aqueles que permanecem à espreita de suas presas. Além disso, o impacto das partículas plásticas nos peixes de riachos - como as espécies da família *Erythrinidae*, como *Erythrinus erythrinus* e *Hoplerythrinus unitaeniatus*, que são predadores exclusivos de riachos e atingem no máximo 30 cm na fase adulta - difere significativamente do impacto em grandes migradores que podem atingir vários metros de comprimento em rios.

A ocupação das partículas no trato gastrointestinal e nas brânquias é proporcionalmente maior em peixes de riachos. É crucial considerar o tamanho corporal tanto em nível individual quanto de espécie, pois as mudanças ontogenéticas alteram a dieta, influenciando os itens alimentares e o tamanho das presas, o que resulta em mudanças no tamanho corporal (Parker et al., 2020).

O estudo de Bauer et al. (2022) investigou a presença de partículas plásticas no trato digestório de peixes de riachos em uma região de baixa densidade populacional da Bacia Subtropical do Rio dos Sinos, na região Sul do Brasil. Foram analisados 258 indivíduos de 17 espécies quanto à contaminação por microplásticos, e 38% dos espécimes continham partículas de plástico. Todas as partículas encontradas foram identificadas como fibras, com uma contagem máxima de 43 microfibras por indivíduo. As fibras plásticas foram consideradas um item alimentar pelos peixes, sendo a quarta categoria de itens mais ingeridos por essas espécies. Os resultados indicaram que a ingestão dessas partículas plásticas estava diretamente relacionada ao número de itens alimentares consumidos. A fonte mais provável dessas partículas são as residências próximas aos córregos, que liberam efluentes de máquinas de lavar sem nenhum tratamento.

TABELA 1- Lista de espécies analisadas quanto à contaminação por microplásticos em 12 riachos amazônicos brasileiros. N = número de indivíduos analisados, Fibras = quantidade de fibras encontradas, Máximo = quantidade máxima por indivíduo analisado, Média = média de partícula por espécie analisada.

Espécies (nome científico)	Espécies (nome popular)	N	Fibras	Máximo	Média
Anscistrus brevipinnis	Cascudo; cascudo-de- barbatanas-curtas	35	70	10	4
Astyanax henseli	Lambari	12	16	8	3
Bryconamericus iheringii	Lambari-Dos-Arroios; biru; lambari-biru	38	39	10	2
Characidium orientale	Dardo	5	2	1	1
Characidium pterostictum	Dardo	44	120	43	6
Crenicichla punctata	Joaninha-do-rio	2	13	13	5
Hemiancistrus punctulatus	Cascudo-pintado	51	59	11	3
Heptapterus mustelinus	Bagre-mustelino	13	24	16	5
Pseudocorynopoma doriae	Saia-de-prata; tamboatá-bandeira	2	1	1	1
Rineloricaria malabarbai	Cascudo-malabar	3	5	4	2,5
Rineloricaria microlepidogaster	Cascudo-de-escamas-pequenas	45	61	21	5

Em peixes, partículas de plástico podem causar danos intestinais, como fissuras nas vilosidades. Essas fissuras permitem a passagem de nanopartículas para o sistema circulatório, onde podem ser fagocitadas, interferindo negativamente na absorção de nutrientes e no sistema imunológico (Qiao et al., 2019). Além disso, resíduos plásticos podem se acumular no trato gastrointestinal, levando ao bloqueio intestinal (Kim et al., 2022). Embora as consequências exatas do bloqueio intestinal ainda sejam incertas, a contaminação crônica por plásticos é conhecida por impactar a aptidão das espécies, particularmente sua capacidade de forrageamento - busca por alimento (Kim et al., 2019; Peters et al., 2017; Yin et al., 2018) e seu potencial reprodutivo (Assas et al., 2020; Wang et al., 2019).

No estudo de Zhang et al. (2021), os autores avaliaram a carpa prateada (*Hypophthalmichthys molitrix*), uma espécie de peixe planctívoro filtrador, que se alimenta de partículas entre 4 µm e 85 µm de tamanho. Seu processo respiratório funciona em conjunto com o mecanismo de alimentação ao filtrar o plâncton da água. Os peixes foram expostos a microesferas de poliestireno de 5 µm durante 48 horas, seguidas de 48 horas de depuração. O efeito foi avaliado por meio de histologia branquial e biomarcadores de estresse oxidativo no intestino.

Os autores concluíram que os microplásticos podem atravessar todo o trato digestivo e ser

excretados pelas fezes. Embora uma baixa concentração de microplásticos (80 µg/L) tenha induzido estresse oxidativo e regulação positiva dos genes TUB84 e HSP70 no intestino, a carpa prateada demonstrou capacidade de recuperação após a remoção da exposição. No entanto, uma alta concentração de microplásticos (800 µg/L) causou danos significativos às brânquias e ao intestino; e, mesmo após a remoção da ameaça, a carpa prateada não conseguiu se recuperar.

Em peixes de água doce, os efeitos dos microplásticos são variados. Entre os principais, destaca-se a indução de distúrbios ionorregulatórios, que afetam a regulação e manutenção dos níveis de íons (eletrólitos). A intensidade desses efeitos varia conforme o tipo, o tamanho, a concentração e o regime de exposição aos microplásticos. Além dos distúrbios diretos, há também interferências indiretas, como aumento da produção de muco, respiração alterada, efeitos histopatológicos nas brânquias (Zhang et al., 2021; Zink e Wood, 2024), estresse oxidativo e alterações nas vias moleculares, que comprometem a homeostase ionorregulatória (Zink e Wood, 2024).

As variantes de polietileno (PE), polipropileno (PP), polietileno tereftalato (PET), poliestireno (PS) e cloreto de polivinila (PVC) representam 90% de todos os polímeros plásticos utilizados e, portanto, também compõem a maioria dos microplásticos encontrada no ambiente de água doce (Parker et al. 2020).

06 MOLUSCOS: SENTINELAS GLOBAIS DA CONTAMINAÇÃO POR MICROPLÁSTICOS

Ítalo Braga de Castro e Victor Vasques Ribeiro⁸

Após atingirem corpos d'água, microplásticos frequentemente permanecem biodisponíveis e podem ser ingeridos por diversos organismos, incluindo aves (Bourdages et al., 2021), peixes (Wootton et al., 2021), zooplâncton (He et al., 2022) e invertebrados aquáticos (Huang et al., 2021). A ingestão de microplásticos pode ocorrer acidentalmente ou devido a erros de identificação durante o forrageio, levando a problemas como sufocamento ou bloqueio intestinal (Andrades et al., 2021).

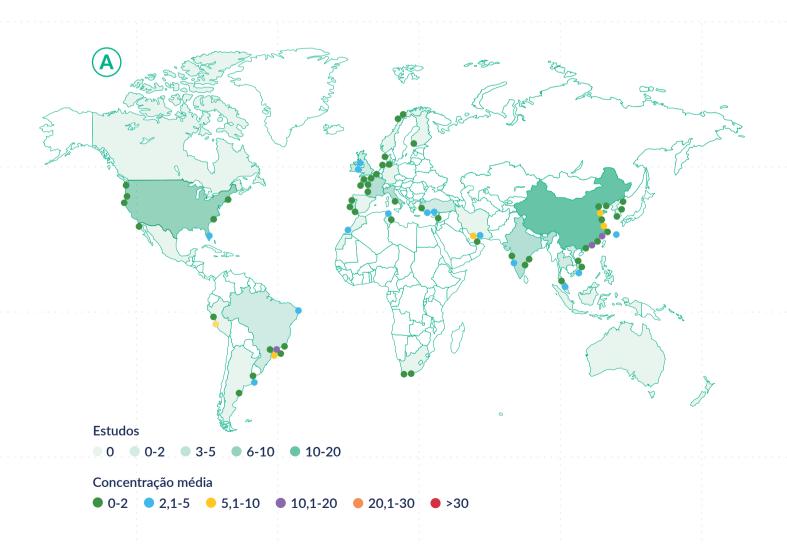
Embora os impactos em invertebrados não recebam tanta atenção, são frequentes na literatura científica (Bom e Sá, 2021). Poliquetas (Costa et al., 2021), microcrustáceos (Jeyavani et al., 2022) e moluscos (Ribeiro et al., 2024) são exemplos de invertebrados frequentemente afetados. Os microplásticos podem adsorver substâncias químicas perigosas, como pesticidas e fármacos, e atuar como veículos dessas moléculas para organismos que os ingerem (Baroja et al., 2021).

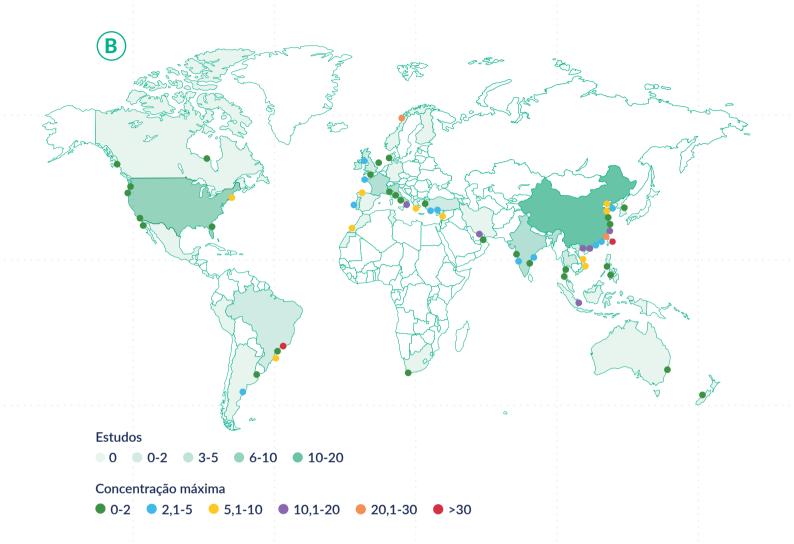
Organismos filtradores, como moluscos bivalves, acumulam microplásticos e substâncias tóxicas que podem ser transferidas para outros organismos e seres humanos através da dieta (Kibria et al., 2022). Moluscos bivalves, como ostras e mexilhões, são amplamente distribuídos e importantes para avaliar a qualidade ambiental, além

de serem uma fonte significativa de renda para comunidades pesqueiras (Santana et al., 2018; Zacchi et al., 2017).

Com base em levantamentos de Bom e Sá (2021) e Ding et al. (2022), dentre outros, foram analisados 102 estudos publicados entre 2014 e 2022 sobre microplásticos em 76 espécies de moluscos (FIGURA 4A). Estes estudos, realizados em 35 países, mostraram que a contaminação por microplásticos é mais comum em zonas costeiras da Ásia e Europa, com concentrações médias superiores a 10 itens/g observadas no Sistema Estuarino de Santos (SES) e na China (Li et al., 2015; Zhang et al., 2022) (FIGURA 4A).

Concentrações máximas superiores a 30 itens/g foram registradas no Brasil (Estuário de Santos) e em Taiwan (Liao et al., 2021) (FIGURA 4B). Embora a costa brasileira seja pouco estudada, níveis recordes de contaminação foram observados no Sistema Estuarino de Santos, apresentando algumas das maiores concentrações médias e máximas globalmente (Ribeiro et al., 2023).


Até o momento, os poucos estudos reportando as concentrações de microplásticos na costa brasileira foram realizados ao longo dos litorais gaúcho (Jankauskas et al., 2024), catarinense (Saldaña-Serrano et al., 2022), paranaense (Oliveira et al.,


^{8.} Instituto do Mar da Universidade Federal de São Paulo (Unifesp)

2024; Vieira et al., 2021), paulista (Ribeiro et al., 2024, 2023; Santana et al., 2018), capixaba (Bom et al., 2022; Costa et al., 2023; Otegui et al., 2024) e pernambucano (Bruzaca et al., 2022). Tendo sido majoritariamente empregadas as ostras da espécie *Crassostrea brasiliana*, os mexilhões da espécie *Perna perna* (Birnstiel et al., 2019; Bom et al., 2022; Machado et al., 2021), os berbigões da espécie *Anomalocardia flexuosa* (Bruzaca et al., 2022) e os mariscos da espécie *Amarilladesma mactroides* (Jankauskas et al., 2024).

A quantidade limitada de estudos ao longo dos mais de 9 mil quilômetros do litoral brasileiro indica um baixo nível de conhecimento sobre esse grave problema ambiental (Nunes et al., 2023a, 2023b). Considerando a presença de sistemas estuarinos densamente povoados e impactados por atividades industriais e turísticas (Castro, 2019), é crucial realizar avaliações detalhadas da distribuição espacial de microplásticos para desenvolver planos de gestão eficazes e mitigar os impactos negativos.

FIGURA 4 – Quantidade de estudos sobre microplásticos em moluscos por país, suas concentrações médias (a) e máximas (b) em itens g^{-1} , considerando 102 estudos e 35 países.

OCEANA

MONITORAMENTO DE PRAIAS E DANOS A AVES, RÉPTEIS E MAMÍFEROS MARINHOS

André S. Barreto, Karla Renata Kaminski Andreoli e Felipe da Silva Valente

No Brasil, os Projetos de Monitoramento de Praias da Bacia de Santos (PMP-BS) e da Bacia de Campos (PMP-BC), vinculados aos licenciamentos ambientais de atividades de exploração de petróleo e gás da Petrobras, monitoram encalhes de animais marinhos nas regiões Sul e Sudeste¹⁰. O objetivo é avaliar o impacto das atividades de produção e escoamento de petróleo, realizadas nas áreas de operação do Pré-Sal, sobre tetrápodes marinhos, como aves, répteis e mamíferos.

O Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis (Ibama) exige o monitoramento de praias há quase 20 anos, como parte das condicionantes para atividades potencialmente poluidoras. Embora os Projetos de Monitoramento de Praias não tenham como objetivo principal avaliar a presença de plásticos nos organismos, a identificação de resíduos no trato gastrointestinal dos animais faz parte dos protocolos de necrópsia. Assim, os dados dos PMP, devido à sua abrangência geográfica e grande esforço amostral, são atualmente a principal fonte de informações sobre a interação da fauna marinha com resíduos plásticos.

O relatório *Um Oceano Livre de Plástico - desafios* para reduzir a poluição marinha no Brasil, publicado em 2020, apontava que, entre 2015 e 2019, foram realizadas 29.010 necrópsias de tetrápodes marinhos nas praias do Sul e Sudeste do Brasil. Desses, 3.725 indivíduos, incluindo golfinhos, baleias, pinípedes, aves e répteis, apresentaram detritos não naturais em seus tratos digestórios. Aproximadamente 13% desses casos tiveram a morte diretamente associada ao consumo de materiais antropogênicos, indicando que um em cada dez animais que ingeriu resíduos sólidos morreu devido a essa ingestão. Além disso, 85% dos indivíduos que ingeriram resíduos sólidos, incluindo plásticos, são espécies ameacadas de extincão.

Este trabalho atualiza as informações sobre o impacto do plástico nos animais com dados coletados até 2023. No período de 2018 a 2023, os Projetos de Monitoramento registraram 138.935 animais nas praias, dos quais 51% eram aves, 44% tartarugas e 5% mamíferos. Dos animais registrados, 38.651 foram necropsiados (28%; TABELA 2). Embora os mamíferos sejam o grupo menos abundante, tiveram uma taxa propor-

^{9.} Laboratório de Informática da Biodiversidade e Geomática (LibGeo), Escola Politécnica, Universidade do Vale do Itajaí (Univali)

^{10.} Para mais informações sobre os PMP e suas análises, checar Anexo 1, na página 70

cionalmente maior de necrópsias (n=3.667; 49,0% do total de registros), em comparação com aves (n=18.747; 26,5%) e tartarugas (n=16.237; 26,7%).

Das necrópsias realizadas, foram observadas interações antrópicas em 12.126 animais (31,4%), com a maior taxa ocorrendo em mamíferos (40,9%). No entanto, apenas 10% das mortes foram consideradas antropogênicas, de acordo com os protocolos dos PMP, que só reconhecem como causas dessa natureza quando há evidências claras de impacto humano. Apesar disso, quase 20% dos mamíferos marinhos tiveram morte de origem humana, comparado a 10,5% das tartarugas e 7,6% das aves.

Esses números são alarmantes, pois uma mortalidade adicional de 10% a 20% pode não ser sustentável a longo prazo. A mortalidade causada por atividades humanas se adiciona à taxa de mortalidade natural da população, que incluem doenças, acidentes naturais e predação. Em um ecossistema balanceado, a mortalidade natural se equilibra com a natalidade, mantendo as populações estáveis. Sem um aumento na natalidade ou uma redução da mortalidade natural, o aumento das mortes por causas humanas pode levar ao declínio das populações ou até mesmo à extinção de espécies.

TABELA 2 – Número de animais registrados e de necrópsias realizadas pelos PMP, indicando a quantidade de casos em que houve registro de interações antrópicas e da causa de morte ser de origem antrópica. Valores percentuais se referem ao total de necrópsias por classe.

	Aves		Mamíf	eros	Tartaru	gas	Tota	al geral
Total de Ocorrências	70.677		7.482		60.774		138.935	
Total de Necrópsias	18.747		3.667		16.237		38.651	
Indícios de Interações Antrópicas	5.079	27,1%	1.499	40,9%	5.548	34,2%	12.126	31,4%
Causa Primária: Antropogênica	1.420	7,6%	720	19,6%	1.708	10,5%	3.848	10,0%

O detalhamento das interações antrópicas (TABELA3) revela que a pesca e o lixo são os tipos mais frequentes de interação. Dos 12.126 animais com interações antrópicas, mais da metade (55,6%) esteve associada à pesca. Aves e tartarugas apresentaram valores próximos a 50% (55,2% e 48,3%, respectivamente), enquanto a pesca foi responsável por 84,2% das interações antrópicas em mamíferos. Por outro

lado, a interação com lixo segue um padrão diferente: os mamíferos foram os menos afetados (10,6%), enquanto as tartarugas apresentaram mais da metade das interações antrópicas com lixo (53,5%). Além disso, 1.185 animais (9,8%) mostraram ambos os tipos de interação antrópica, evidenciando os diversos riscos a que estão expostos simultaneamente.

TABELA 3 – Tipos de interação antrópica detectados durante as necrópsias de animais recolhidos pelos Projetos de Monitoramento de Praias (PMP) da Petrobras, com dados disponíveis no SIMBA em 20/12/2023.

Interações Antrópicas	Aves		Mamíf	eros	Tartarı	ıgas	Tot	tal geral
Indícios de Interações Antrópicas	5.079		1.499		5.548		12.126	
Interação com Pesca	2.804	55,2%	1.262	84,2%	2.679	48,3%	6.745	55,6%
Interações com Lixo	1.688	33,2%	159	10,6%	2.966	53,5%	4.813	39,7%
Demais interações*	1.010	19,9%	284	18,9%	982	17,7%	2.276	18,7%
Interação com Lixo e Pesca	282	5,6%	78	5,2%	825	14,9%	1.185	9,8%

^{*}Demais interações: agressão/vandalismo/caça; interação com dragagem; interação com embarcações; interação com óleo/petróleo.

A interação com lixo pode ocorrer externamente, quando um animal entra em contato com resíduos, ou internamente, através da ingestão. A presença de lixo no trato gastrointestinal (TGI) é identificada durante a triagem do conteúdo estomacal ou intestinal dos animais. Das 36.651 necrópsias realizadas, 12.280

(31,8% - TABELA4) tiveram a triagem do TGI. Em mais de um terço dos casos analisados (4.471, 36,4%), foram encontrados resíduos sólidos, dos quais 77,5% eram de origem humana, e não naturais. É crucial observar que resíduos no TGI não são itens alimentares, mas materiais estranhos à dieta da espécie.

TABELA 4 - Quantidade de animais em que foi realizada a triagem do conteúdo presente no trato gastrointestinal (TGI), registrados nos Projetos de Monitoramento de Praias (PMP) da Petrobras, com dados disponíveis no SIMBA em 20/12/2023.

	Aves		Mamíf	eros	Tartar	ugas	То	tal geral
Triagem do Conteúdo TGI	5.044		1.382		5.854		12.280	
Presença de Resíduos Sólidos	1.581		295		2.595		4.471	
Resíduo Sólido Naturais	350	22,1%	195	66,1%	461	17,8%	1.006	22,5%
Resíduos Sólidos Antropogênicos	1.231	77,9%	100	33,9%	2.134	82,2%	3.465	77,5%

A presença de lixo no TGI variou entre as classes zoológicas. Embora ainda elevados, os mamíferos apresentaram a menor incidência, com 33,9%. Em contraste, aves e tartarugas mostraram taxas mais altas, 77,9% e 82,2%, respectivamente. Esses valores refletem qualquer resíduo de origem

humana, independentemente de sua composição. O plástico foi o tipo mais comum, observado em 76,9% dos casos, independentemente da classe zoológica (TABELA 5). No estudo *Um Oceano Livre de Plástico*, a taxa de resíduo plástico foi próxima de 50% no período de 2015 a 2018.

TABELA 5 – Tipos de resíduos de origem antrópica observados durante as triagens de conteúdo gastrointestinal de animais registrados nos Projetos de Monitoramento de Praias (PMP) da Petrobras, com dados disponíveis no SIMBA em 20/12/2023. Um animal pode apresentar mais de um tipo de resíduo.

Tipo de resíduo	Aves		Mamífer	ros	Tartarug	as	To	tal Geral
Plástico	919	74,7%	78	78,0%	1.669	78,2%	2.666	76,9%
Vidro	38	3,1%	0	0,0%	1	0,0%	39	1,1%
Metal	19	1,5%	3	3,0%	29	1,4%	72	2,1%
Derivados de Látex	61	5,0%	1	1,0%	153	7,2%	219	6,3%
Resíduo Não Identificados	248	20,1%	20	20,0%	446	20,9%	714	20,6%

Embora os protocolos dos PMP não definam uma padronização para classificar os tipos de plásticos, procurou-se categorizá-los em grandes grupos com base na descrição do material encontrado. A maioria dos resíduos plásticos identificados era de plástico maleável (TABELA 6). Interessante observar que pedaços de plástico rígido foram mais frequentes nas aves do que em tartarugas e mamíferos, possivelmente devido ao hábito dessas espécies de consumir itens flutuantes no mar. Esse comportamento torna algumas espécies mais vulneráveis à presença de plástico.

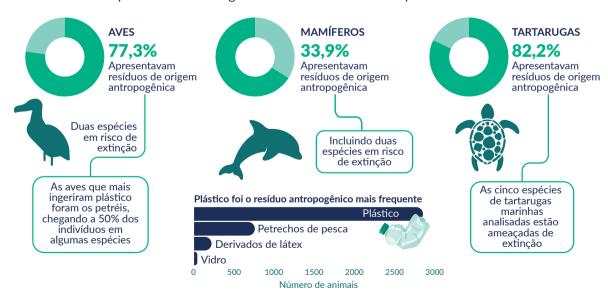


TABELA 6 – Quantidade de animais que ingeriram plástico, de acordo com o tipo do material ingerido, em animais necropsiados nos Projetos de Monitoramento de Praias (PMP) da Petrobras, com dados disponíveis no SIMBA em 20/12/2023. Um animal pode apresentar resíduos plásticos de mais de um tipo.

Tipos de Plástico	Aves		Mam	íferos	Tartar	ugas	То	tal geral
Plástico (não definido)	272	29,6%	42	53,8%	580	34,8%	894	33,5%
Plástico Rígido	303	33,0%	9	11,5%	400	24,0%	712	26,7%
Plástico Maleável	323	35,1%	32	41,0%	742	44,5%	1.097	41,1%
Linha/Fio de Nylon	165	18,0%	18	23,1%	522	31,3%	650	24,4%
Saco/Sacola Plástica	7	0,8%	2	2,6%	101	6,1%	110	4,1%
Canudo	4	0,4%	3	3,8%	13	0,8%	20	0,8%
Bexiga/Balão de Festa	26	2,8%	0	0,0%	91	5,5%	117	4,4%
Petrechos/Linha/Rede de Pesca	27	2,9%	8	10,3%	75	4,5%	110	4,1%
Espuma	7	0,8%	0	0,0%	22	1,3%	29	1,1%
Isopor	47	5,1%	6	7,7%	107	6,4%	160	6,0%
Total de animais com ingestão de plástico	919		78		1.669			2.666

FIGURA 5 - O impacto do lixo marinho na vida selvagem: consumo de plástico por aves, mamíferos e tartarugas marinhas

Resíduos sólidos presentes no trato gastrointestinal de 4.471 tetrápodes marinhos foram analisados

Fonte: Sistema de informação de Monitoramento da Biota Aquática - SIMBA.

Ocorrência de plástico por espécie

Houve diferenças significativas na ocorrência de plásticos no trato gastrointestinal (TGI) entre aves, mamíferos e tartarugas marinhas. Nas 12.280 análises de TGI realizadas, em 169 não foi possível identificar a espécie do animal devido ao estado de decomposição. A presença de plástico foi identificada em 2.666 casos (22,0%), abrangendo 49 das 99 espécies analisadas¹¹.

Ao se analisar a ocorrência de plástico no TGI das espécies, fica clara a diferença entre elas. Apesar da incidência para as aves como um todo ser de 19,1%, há espécies em que a incidência de plásticos no TGI chegou a mais de 50%, como o petrel-gigante, Macronectes giganteus; a pardela-de-barrete, Ardenna (Puffinus) gravis; e a pardela-escura, Ardenna (Puffinus) grisea. Observa-se um padrão em que as espécies da ordem Procellariiformes têm valores de incidência consideravelmente mais altos do que os das outras ordens. Por serem espécies oceânicas, com menor ocorrência nos encalhes em praias, ao serem analisadas junto com espécies costeiras mais abundantes, esses valores se diluem. Provavelmente, a diferença na frequência de plásticos se dá por causa dos hábitos alimentares das espécies examinadas, que tendem a capturar presas perto da superfície, confundindo pedaços de plástico flutuando com suas presas (Provencher et al., 2014; Robuck et al., 2022) ou por utilizarem pistas químicas (odores) similares às liberadas pelos plásticos (Savoca et al., 2016).

Nas tartarugas, a incidência de plástico no trato gastrointestinal em quatro das cinco espécies analisadas supera 25%, alcançando 44,7% na tartarugade-couro (Dermochelys coriacea). Embora o número de exemplares examinados seja relativamente baixo

(47 animais), o hábito alimentar dessa espécie, que se nutre de zooplâncton gelatinoso (Almeida et al., 2011), provavelmente a leva a confundir sacolas ou outros plásticos flexíveis flutuantes com seu alimento natural. Dos 21 animais com plástico no TGI, 12 continham plásticos flexíveis, e dois continham sacolas plásticas, corroborando essa hipótese. A tartaruga-verde, a espécie mais abundante na amostra, apresentou uma incidência de plásticos de 30,3% (1.590 animais). O comportamento alimentar dos adultos, que consomem principalmente algas, e dos juvenis, que se alimentam de zooplâncton (Arthur et al., 2008), pode levar à ingestão de plásticos encontrados tanto no fundo do mar como flutuando na superfície.

Variação espacial

Assim como há variação na ocorrência de plástico entre as espécies, também se observou variação entre as áreas geográficas analisadas. A abundância de animais avaliados mostrou uma tendência de redução do sul para o norte (TABELA 7). Embora existam diferenças na extensão da área monitorada em cada estado e na amplitude temporal dos dados disponíveis12, esse padrão de redução na taxa de registros por quilômetro monitorado de sul para norte já havia sido reportado anteriormente (Petrobras, 2019). Essa variação provavelmente reflete condições ambientais relacionadas à produtividade primária de cada região (Vasconcellos & Gasalla, 2001). Independentemente da quantidade de animais registrados, a frequência relativa de interações antrópicas foi de 31,4% para todos os estados combinados, mas variando de 17% a 83% entre eles.

^{11.} Para mais informações, checar TABELA 11, no Anexo 1, na página 71

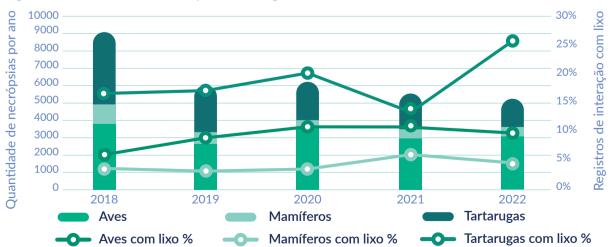
^{12.} Checar Anexo 1, na página 70

TABELA 7 - Quantidade de ocorrências, necrópsias, indícios de interação antrópica e animais com causa de morte antropogênica, de acordo com o estado onde foram registrados. Estados ordenados de sul para norte. Percentuais de interações antrópicas e causa de morte se referem aos animais necropsiados.

Estado	Total de Ocorrências	Total de Necrópsias	Indícios de Interações Antrópicas	Causa de Morte Antrópica
Santa Cataria	48.005	9.831	3.485	1.285
Santa Catarina	20,5%		35,4%	13,1%
Paraná	14.983	3.405	1.337	472
Paralla	22,7%		39,3%	35,3%
São Paulo	30.200	11.486	4.625	1.661
Sao Paulo	38,0%		40,3%	14,5%
Die de leureine	27.957	11.252	1.932	271
Rio de Janeiro	40,2%		17,2%	2,4%
Forefitta Conta	10.338	1.538	331	22
Espírito Santo	14,9%		21,5%	1,4%
Bahia	971	249	81	31
Dariia	25,6%		32,5%	12,4%
Cin	2.951	698	211	75
Sergipe	23,7%		30,2%	10,7%
Al	1.836	65		
Alagoas	3,5%*			
Die Counde de Neute	837	110	91	22
Rio Grande do Norte	13,1%		82,7%	20,0%
Casará	807	17		
Ceará	2,1%*			
T	138.885	38.651	12.126	3.848
Total	27,8%		31,4%	10,0%

 $^{{}^*\}text{Devido ao baixo percentual de necrópsias, os dados desses estados n\'ao foram analisados separadamente}$

Variação temporal


Para avaliar mudanças ao longo do tempo na incidência de resíduos antrópicos no trato gastrointestinal (TGI) dos animais, o ano de 2023 não foi considerado porque seus dados eram parciais. Entre 2018 e 2022, observou-se que, apesar de algumas oscilações no número de necrópsias realizadas, a incidência de lixo no TGI apresentou uma tendência de aumento (FIGURA 6). No entanto, esse aumento não foi homogêneo entre as três classes monitora-

das pelos Projetos de Monitoramento (**FIGURA7**). Os mamíferos mantiveram a menor ocorrência de lixo no TGI ao longo dos anos, variando entre 3,1% e 6%. As aves apresentaram valores ligeiramente mais altos (5,2% a 11,1%), com um aumento nos primeiros três anos e uma estabilização a partir de 2020. Já as tartarugas, que sempre exibiram os índices mais elevados (17,6% a 25,8%), foram as principais responsáveis pelo aumento observado no padrão geral.

FIGURA 6 - Quantidade de necrópsias realizadas pelos Projetos de Monitoramento de Praias (PMP) da Petrobras entre 2018 e 2022 e frequência relativa da incidência de lixo no trato gastrointestinal.

FIGURA 7 - Quantidade de necrópsias realizadas anualmente pelos Projetos de Monitoramento de Praias (PMP) da Petrobras entre 2018 e 2022, e frequência relativa da incidência de lixo nas três classes de organismos: aves, mamíferos e répteis (tartarugas).

Efeitos do lixo sobre os animais

A ingestão de lixo pode criar uma falsa sensação de saciedade ou obstruir o trânsito de alimentos no trato gastrointestinal (TGI) dos animais (Colferai et al., 2017; McCauley & Bjorndal, 1999), levando à caquexia - uma perda significativa de massa muscular, gordura e densidade óssea. Além disso, animais debilitados por outras causas podem ingerir mais lixo devido à incapacidade de obter seu alimento natural.

Embora os efeitos sobre o sistema digestivo não sejam a principal causa de morte dos animais, ele

está consistentemente entre os cinco sistemas mais afetados (TABELA 8). Ao comparar animais com e sem plástico no TGI, observa-se um aumento na frequência de lesões no sistema digestivo em todas as classes. Essa diferença é de apenas 1,4% nos mamíferos, mas sobe para 3,8% nas tartarugas e chega a 7,1% nas aves. Isso indica que a ingestão de plástico tem efeitos negativos significativos, especialmente no sistema digestivo, provavelmente contribuindo para a morte desses animais.

TABELA 8 – Sistema identificado como principal lesão ligada à causa de morte dos animais necropsiados nos Projetos de Monitoramento de Praias (PMP) da Petrobras, entre 2018 e 2022, separados de acordo com a presença ou ausência de plástico no trato gastrointestinal. Não foram incluídos animais com causa de morte indeterminada.

	Sistema (causa de morte)	Sem plástico	Com plástico
Aves	Respiratório	37,8%	34,3%
	Músculo esquelético	20,6%	23,8%
	Circulatório	17,7%	12,7%
	Digestivo	16,9%	24,1%
	Outros	6,9%	5,2%
	N	11.476	750
Mammalia	Respiratório	74,3%	73,2%
	Circulatório	7,2%	2,8%
	Cutâneo	5,8%	8,5%
	Músculo esquelético	5,6%	4,2%
	Digestivo	2,8%	4,2%
	Outros	4,2%	7,0%
	N	1.224	7:
Reptilia	Respiratório	36,0%	43,8%
	Circulatório	34,3%	23,5%
	Digestivo	14,9%	18,7%
	Músculo esquelético	7,3%	4,6%
	Outros	7,4%	9,5%
	N	4.028	1.087
Total	Respiratório	40,0%	41,1%
	Circulatório	20,9%	18,4%
	Músculo esquelético	16,3%	12,2%
	Digestivo	15,4%	20,3%
	Outros	7,3%	8,0%
	N	16.728	1.914

Os resultados mostram que a presença de plástico nos tetrápodes marinhos é um problema sério, embora a incidência e severidade pareçam ser menores nos mamíferos do que em aves e tartarugas. Nos dois últimos grupos, é alarmante que 1/3 das aves e mais de 50% das tartarugas necropsiadas apresentaram interação com lixo. As mudanças no escore corporal e o aumento das lesões no sistema digestivo como causa de morte nos animais que ingeriram plástico são fortes indícios de que essa interação está tendo um efeito deletério.

Os resultados também sugerem que alguns grupos de animais são mais vulneráveis que outros, especialmente as aves oceânicas da ordem Procellarii-formes. Essa constatação é consistente com outros estudos realizados em diferentes locais (Clark et al., 2023; Roman et al., 2019) e está ligada aos hábitos alimentares desse grupo.

No relatório anterior, de 2020, foram analisados dados originários exclusivamente do Projeto de Mo-

nitoramento de Praias da Bacia de Santos (PMP-BS). Os resultados não diferem significativamente do que foi apresentado nesta nova análise, uma vez que o PMP-BS é responsável pela maior quantidade de dados disponíveis no SIMBA. No entanto, ao expandir a análise para incluir dados de outros PMP da Petrobras, este trabalho revela que a interação com lixo também ocorre em outras áreas, podendo ser de intensidade igual ou até maior do que na Bacia de Santos.

É importante interpretar os resultados deste trabalho considerando que os dados apresentados são obtidos de necrópsias cujo objetivo principal era identificar as causas de morte dos animais, e não a presença ou quantificação de plásticos. Diversas pesquisas sugerem metodologias específicas para a coleta do conteúdo gastrointestinal quando o foco é a detecção de plásticos e microplásticos. Portanto, os resultados apresentados aqui devem ser considerados como valores mínimos, indicando que a incidência de plásticos nos animais é provavelmente muito maior.

OCEANA

08 VIVENDO EM PLÁSTICO: AMEAÇAS ÀS TARTARUGAS MARINHAS

Robson G. Santos¹²

Ao longo de sua história evolutiva, as tartarugas marinhas enfrentaram enormes desafios, sobrevivendo a grandes eventos de extinção, como o que levou ao desaparecimento dos dinossauros. Nos últimos séculos, a caça e a coleta de ovos provocaram uma drástica redução das suas populações. No entanto, os esforços de conservação começaram a reverter essa tendência e, nas últimas décadas, algumas populações vêm se recuperando (Mazaris et al., 2017). Atualmente, enquanto a trajetória de declínio é parcialmente revertida, os ecossistemas marinhos sofrem um intenso processo de degradação e as tartarugas marinhas enfrentam um novo desafio: a poluição por plásticos.

Os registros de ingestão de plástico por tartarugas marinhas datam da década de 1970 e, desde a década de 1980, vêm crescendo. Hoje, a ingestão de plástico é registrada nas sete espécies de tartarugas marinhas existentes, afetando esses animais

em todas as fases de seu ciclo de vida, desde os filhotes em fase oceânica até os adultos em áreas de alimentação (Schuyler et al., 2014). A ingestão de plástico tornou-se onipresente, como demonstrado em um estudo global que revelou que todos os animais de todas as espécies haviam ingerido plástico (Duncan et al., 2019).

No Brasil, o panorama é semelhante, com registros de ingestão de plástico nas cinco espécies que ocorrem no país: tartaruga-verde (Chelonia mydas), tartaruga-cabeçuda (Caretta caretta), tartaruga-de-pente (Eretmochelys imbricata), tartaruga-oliva (Lepidochelys olivacea) e tartaruga-decouro (Dermochelys coriacea).

Um estudo nacional com tartarugas-verdes revelou altos índices de ingestão, com plástico encontrado em média em 70% dos mais de 250 animais avaliados, chegando a 100% em algumas áreas (Santos et al., 2015). Esse estudo também mostrou que a ingestão de quantidades tão pequenas quanto 0,5 g de plástico, o equivalente a um décimo de uma sacola plástica, já foi suficiente para matar alguns indivíduos. Em média, as tartarugas ingeriram quase 50 itens, com alguns animais chegando a ingerir mais de 900 itens de plástico. A maioria desse plástico consistia em pedaços de sacolas plásticas e embalagens descartáveis, além de fragmentos de plástico rígido e itens provenientes da pesca (Santos et al., 2015).

A ingestão de plástico por tartarugas marinhas é uma realidade ao longo de quase todo o litoral brasileiro, desde o Rio Grande do Sul até o Ceará, embora faltem estudos sobre o litoral da região Norte.

Essa ingestão de plástico leva a problemas crônicos de saúde ou até à morte dos animais, seja pelos impactos físicos ou pelos poluentes presentes no plástico.

Um estudo com tartarugas-verdes no Brasil revelou que para cada grama de plástico ingerido há um aumento entre 250% e 450% na chance de o animal ficar abaixo do peso ou definhar (Santos et al., 2020).

A obstrução ou o rompimento do trato gastrointestinal devido à ingestão de plástico é a principal causa de morte, e pequenas quantidades de plástico já são suficientes para causar mortalidade, com estudos sugerindo uma probabilidade de 50% de morte a partir da ingestão de 14 itens (Santos et al., 2015). Considerando os dados brasileiros, as tartarugas-verdes do litoral ingerem, em média, quase 50 itens, o que demonstra um alto risco (Santos et al., 2015).

As ameaças da ingestão de plástico têm que ser consideradas no contexto de sinergia de múltiplos impactos combinados, em que as tartarugas marinhas estão expostas não só à poluição por plástico, mas também à degradação dos habitats de alimentação e nidificação (processo de construção dos ninhos), mudanças climáticas, diversas doenças e à pesca.

Armadilha plástica

As tartarugas marinhas ingerem plástico porque o confundem com alimentos. Um exemplo comum é

a semelhança entre sacolas plásticas e águas-vivas. No entanto, o problema é mais complexo do que a simples semelhança com presas específicas.

As tartarugas marinhas, assim como outros animais, caíram em uma armadilha evolutiva (Santos et al., 2021). Elas evoluíram em um ambiente onde não havia plástico, e tudo o que flutuava no mar eram pedaços de animais ou plantas. Comer algo que estivesse flutuando no mar, mesmo que não parecesse um alimento, poderia ser vantajoso. Porém, nas últimas décadas, os oceanos foram inundados por uma quantidade massiva de plástico, transformando esse comportamento em um risco mortal.

A questão central é como desarmar essa "armadilha plástica". Não é viável esperar que os animais desenvolvam novos comportamentos rapidamente, pois esse é um processo que levaria inúmeras gerações; no caso das tartarugas marinhas, possivelmente centenas ou milhares de anos. Tampouco é razoável supor que possam aprender a evitar o consumo de plástico, dada a enorme variedade de formas e cores desse material nos oceanos, além do fato de que os efeitos nocivos da ingestão de plástico só se manifestam muito tempo após o consumo, dificultando qualquer processo de aprendizado.

A única solução viável para desarmar essa "armadilha plástica" é a redução imediata da quantidade de plástico nos oceanos. Isso deve ser alcançado por meio da diminuição da produção e do uso de plástico, com a implementação de uma Economia Circular, investimentos robustos em sistemas de reciclagem e gestão de resíduos plásticos, e a remoção dos resíduos plásticos já presentes no ambiente.

09 RECOMENDAÇÕES

Uma análise aprofundada dos impactos da poluição plástica e do microplástico na fauna marinha revela uma crise ambiental de proporções alarmantes, que demanda respostas urgentes. À medida que os plásticos continuam a inundar nossos oceanos, o número de espécies marinhas afetadas cresce de forma exponencial e já chegam no nosso prato. Dezenas de milhares de organismos, desde o zooplâncton e peixes até tartarugas, mamíferos e aves marinhas, muitos já ameaçados de extinção, estão ingerindo quantidades crescentes de plástico diariamente.

Os principais responsáveis por essa poluição são os produtos e as embalagens plásticas descartáveis, que compõem a maior parte dos detritos marinhos. Esses fragmentos são frequentemente encontrados no trato digestivo, nas brânquias e em outras partes do corpo de diversas espécies e oferecem muitos riscos à saúde humana, uma vez que microplásticos já

foram detectados em órgãos vitais, como coração, cérebro, pulmões e fígado.

A solução urgente, prática e concreta para impedir que o plástico de uso único continue poluindo o mar é reduzir a produção, a oferta e o consumo desse material. O primeiro passo é substituir, gradativamente, todo o plástico problemático e evitável, como os produtos descartáveis, por alternativas retornáveis, reutilizáveis, que não gerem resíduos, ou por materiais alternativos mais sustentáveis.

Apenas se estiver limpo e em equilíbrio, nosso oceano pode seguir sendo fonte de renda e segurança alimentar para mais de um bilhão de pessoas todos os dias. Governos e empresas precisam se responsabilizar e se comprometer com ações objetivas e eficientes para a redução dessa poluição. A Oceana recomenda três soluções viáveis que, juntas, podem reduzir efetivamente a poluição marinha por plástico:


APROVAR O PROJETO DE LEI 2524/2022, QUE PROPÕE A IMPLEMENTAÇÃO DE UMA ECONOMIA CIRCULAR DO PLÁSTICO: o Brasil precisa de uma lei em âmbito nacional para regular a produção e o consumo de todo plástico evitável e desnecessário. Construído de forma coletiva, o PL 2524/2022 tramita no Congresso Nacional e sugere regras para eliminar todos os itens descartáveis desnecessários e problemáticos; garantir que as embalagens sejam reutilizáveis, retornáveis, comprovadamente recicláveis ou compostáveis; e reconhecer o protagonismo de catadoras e catadores de materiais recicláveis na gestão de resíduos no país, pela sua inclusão no Programa Federal de Pagamento por Serviços Ambientais, dentre outras.

PROMOVER ALTERNATIVAS AO PLÁSTICO: as empresas devem oferecer aos consumidores, a preços acessíveis, opções livres de plástico para seus produtos e embalagens. São inúmeras as possibilidades: produtos a granel; embalagens retornáveis; substituição de embalagens de isopor por materiais biodegradáveis e/ou compostáveis; produtos com opção de refil. Diversas empresas têm oferecido alternativas, comprovando não só a viabilidade da transição para produtos ou embalagens diferenciadas, como o interesse do consumidor por essa opção.

INVESTIR EM PESQUISA E DESENVOLVIMENTO: governos e empresas devem trabalhar juntos para investir em pesquisa e inovação voltadas para o design de produtos e embalagens, favorecendo alternativas reutilizáveis ou compostáveis.

REFERÊNCIAS BIBLIOGRÁFICAS

- [1] AGÊNCIA NACIONAL DE ÁGUAS (ANA). Conjuntura dos recursos hídricos no Brasil 2017: relatório pleno. Brasília: ANA, 2017.
- [2] ALMEIDA, A. DE P. et al. Avaliação do estado de conservação da tartaruga marinha *Dermochelys coriacea* (Vandelli, 1761) no Brasil. **Biodiversidade Brasileira BioBrasil**, n. 1, 2020. https://doi.org/10.37002/biodiversidadebrasileira.v1i1.90
- [3] AMARAL-ZETTLER, Linda A.; ZETTLER, Erik R.; MINCER, Tracy J. Ecology of the plastisphere. Nature Reviews Microbiology, [S.L.], v. 18, n. 3, p. 139-151, 14 jan. 2020. Springer Science and Business Media LLC. http://dx.doi.org/10.1038/s41579-019-0308-0.
- [4] ANBUMANI, S., KAKKAR, P. Ecotoxicological effects of microplastics on biota: a review. Environ. Sci. Pollut. Res. 25, 14373–14396, 2018. https://doi.org/10.1007/s11356-018-1999-x
- [5] ANDRADES, R. et al. Anthropogenic litter on Brazilian beaches: Baseline, trends, and recommendations for future approaches. Marine Pollution Bulletin, 151, 110842, 2020. https://doi.org/10.1016/j.marpolbul.2019.110842
- [6] ANDRADES, R., TRINDADE, P.A.A., GIARRIZZO, T., 2021. A novel facet of the impact of plastic pollution on fish: Silver croaker (Plagioscion squamosissimus) suffocated by a plastic bag in the Amazon estuary, Brazil. Marine Pollution Bulletin, 166, 112197, 2021. https://doi.org/10.1016/j.marpolbul.2021.112197
- [7] ARTHUR, K. E.; BOYLE, M. C.; LIMPUS, C. J. Ontogenetic changes in diet and habitat use in green sea turtle (*Chelonia mydas*) life history. Marine ecology progress series, v. 362, p. 303–311, 2008. http://dx.doi.org/10.3354/meps07440
- [8] ASSAS, M., QIU, X., CHEN, K., OGAWA, H., Xu, H., SHIMASAKI, Y., & OSHIMA, Y., 2020. Bioaccumulation and reproductive effects of fluorescent microplastics in medaka fish. Marine Pollution Bulletin, 158, 111446, 2020. https://doi.org/10.1016/j.marpolbul.2020.111446
- [9] ASSOCIAÇÃO BRASILEIRA DE EMPRESAS DE LIMPEZA PÚBLICA E RESÍDUOS ESPECIAIS (ABRELPE). Panorama dos resíduos sólidos no Brasil 2020. São Paulo. 2020.
- [10] ASSOCIAÇÃO BRASILEIRA DE RESÌDUOS E MEIO AMBIENTE (ABREMA). Panorama dos resíduos sólidos no Brasil 2023. 2023. Disponível em: https://www.abrema.org.br.
- [11] BAES, L. et al., 2024. Beached seabirds as plastic biomonitors in Brazil from the Beach Monitoring Project of the Santos Basin (PMP-BS). Marine pollution bulletin, v. 199, n. 115847, p. 115847. https://doi.org/10.1016/j.marpolbul.2023.115847
- [12] BAROJA, E., CHRISTOFOROU, E., LINDSTRÖM, J., SPATHARIS, S. Effects of microplastics on bivalves: Are experimental settings reflecting conditions in the field? Marine Pollution Bulletin 171, 112696, 2021. https://doi.org/10.1016/j.marpolbul.2021.112696
- [13] BARRETO, A. S. et al. Conhecimento sobre mamíferos marinhos gerado pela indústria de sísmica através do sistema de apoio ao monitoramento de mamíferos marinhos (SIMMAM). Em: Owens, A.; Favaretto, Barbosa, A. F. (Ed.) 2020. Em busca de conhecimento e sustentabilidade através do licenciamento ambiental. [s.l: s.n.]. p. 102–114. Acesso disponível em: https://www.gov.br/anp/pt-br/centrais-de-conteudo/publicacoes/livros-e-revistas/arquivos/ibama-anp-2020.pdf
- [14] BARROS, J., & SEENA, S. Plastisphere in freshwaters: An emerging concern. Environmental Pollution, 290, 118123, 2021. https://doi.org/10.1016/j.envpol.2021.118123
- [15] BAUER, A. L.; FERRAZ, M.; SOUZA, V. C.; SCHULZ, U. H. Far from urban areas: plastic uptake in fish populations of subtropical headwater streams. Brazilian Journal Of Biology, [S.L.], v. 82, 2022. FapUNIFESP (SciELO). http://dx.doi.org/10.1590/1519-6984.267886.
- [16] BHUYAN, S. Effects of Microplastics on Fish and in Human Health. Front. Environ. Sci. 10, 1–17, 2022. https://doi.org/10.3389/fenvs.2022.827289
- [17] BLETTLER, M.C.M., MITCHELL, C., 2021. Dangerous traps: Macroplastic encounters affecting freshwater and terrestrial wildlife. Sci. Total Environ. 798, 149317, 2021. https://doi.org/10.1016/j.scitotenv.2021.149317
- [18] BOLOGNESI, C., Cirillo, S. Genotoxicity biomarkers in aquatic bioindicators. Curr. Zool. 60, 273–284, 2014. https://doi.org/10.1093/czoolo/60.2.273

- [19] BOM, F.C., SÁ, F. Concentration of microplastics in bivalves of the environment: a systematic review. **Environ. Monit. Assess.** 193, 846, 2021. https://doi.org/10.1007/s10661-021-09639-1
- [20] BOM, F.C., de BRITO, W.V.F., SÁ, F., 2022. Microplastics concentration in bivalve of economic importance, a case study on the southeastern Brazilian coast. **Regional Studies in Marine Science**, 52, 102346, 2022. https://doi.org/10.1016/j.rsma.2022.102346
- [21] BOTTERELL, Z. L. R. et al. Bioavailability and effects of microplastics on marine zooplankton: A review. **Environmental pollution** (Barking, Essex: 1987), v. 245, p. 98–110, 2019. https://doi.org/10.1016/j.envpol.2018.10.065
- [22] BOURDAGES, M.P.T., PROVENCHER, J.F., BAAK, J.E., MALLORY, M.L., Vermaire, J.C. Breeding seabirds as vectors of microplastics from sea to land: Evidence from colonies in Arctic Canada. Science of The Total Environment 764, 142808., 2021 https://doi.org/10.1016/j.scitotenv.2020.142808
- [23] BOUWMEESTER, Hans; HOLLMAN, Peter C. H.; PETERS, Ruud J. B. Potential Health Impact of Environmentally Released Micro- and Nanoplastics in the Human Food Production Chain: experiences from nanotoxicology. **Environmental Science & Technology**, [S.L.], v. 49, n. 15, p. 8932-8947, 15 jul. 2015. American Chemical Society (ACS). http://dx.doi.org/10.1021/acs.est.5b01090.
- [24] BRASIL. Ministério do Meio Ambiente. Plano Nacional de Combate ao Lixo no Mar: Painel de Resultados de Mutirões de Limpeza de Praia, 2019. Brasília, DF: Ministério do Meio Ambiente, 2019. Disponível em: https://antigo.mma.gov.br/agenda-ambiental-urbana/lixo-no-mar.html
- [25] BRASIL. Senado Federal. **Projeto de Lei N° 2524**, de 2022. Estabelece regras relativas à economia circular do plástico; altera a Lei n° 9.605, de 12 de fevereiro de 1998, para dar coercitividade à nova Lei, tipificando condutas relativas ao seu descumprimento; e altera a Lei n° 14.119, de 13 de janeiro de 2021, para incluir as atividades das cooperativas e associações de catadores de materiais reutilizáveis e recicláveis no Programa Federal de Pagamento por Serviços Ambientais. Brasília, DF: Senado Federal, 2022. Disponível em: https://legis.senado.leg.br/sdleg-getter/documento?dm=9202366&ts=1709652299370&disposition=inline.
- [26] BREJAO, Gabriel Lourenco; GERHARD, Pedro; ZUANON, Jansen. Functional trophic composition of the ichthyofauna of forest streams in eastern Brazilian Amazon. Neotropical Ichthyology, [S.L.], v. 11, n. 2, p. 361-373, 18 jun. 2013. FapUNIFESP (SciELO). http://dx.doi.org/10.1590/s1679-62252013005000006.
- [27] BRUZACA, David N.A.; JUSTINO, Anne K.s.; MOTA, Géssica C.P.; COSTA, Gelcirene A.; LUCENA-FRÉDOU, Flávia; GÁLVEZ, Alfredo O. Occurrence of microplastics in bivalve molluscs Anomalocardia flexuosa captured in Pernambuco, Northeast Brazil. Marine Pollution Bulletin, [S.L.], v. 179, p. 113659, jun. 2022. Elsevier BV. http://dx.doi.org/10.1016/j.marpolbul.2022.113659.
- [28] BUCCI, K.; TULIO, M.; ROCHMAN, C. M. What is known and unknown about the effects of plastic pollution: A meta-analysis and systematic review. Ecological applications: a publication of the Ecological Society of America, v. 30, n. 2, 2020. https://doi.org/10.1002/eap.2044
- [29] CANTOR, Mauricio; BARRETO, André Silva; TAUFER, Renata M; GIFFONI, Bruno; CASTILHO, Pedro V; MARANHO, Andrea; BEATRIZ, Carla; KOLESNIKOVAS, Christiane; GODOY, Daniela; ROGÉRIO, Daniel W. High incidence of sea turtle stranding in the southwestern Atlantic Ocean. Ices Journal of Marine Science, [S.L.], v. 77, n. 5, p. 1864-1878, 11 maio 2020. Oxford University Press (OUP). http://dx.doi.org/10.1093/icesjms/fsaa073.
- [30] CARPENTER, Edward J.; ANDERSON, Susan J.; HARVEY, George R.; MIKLAS, Helen P.; PECK, Bradford B. Polystyrene Spherules in Coastal Waters. Science, [S.L.], v. 178, n. 4062, p. 749-750, 17 nov. 1972. American Association for the Advancement of Science (AAAS). http://dx.doi.org/10.1126/science.178.4062.749.
- [31] CARVALHO, Cássia de; KEUNECKE, Karina A.; LAVRADO, Helena P. Differences in feeding ecology of the pink shrimps Penaeus brasiliensis and P. paulensis (Decapoda: penaeidae) in brazilian tropical ecosystems. **Aquatic Ecology**, [S.L.], v. 57, n. 3, p. 701-714, 13 jun. 2023. Springer Science and Business Media LLC. http://dx.doi.org/10.1007/s10452-023-10040-y.
- [32] CASTRO, Ítalo Braga. Improper environmental sampling design bias assessments of coastal contamination. **Trends In Environmental Analytical Chemistry**, [S.L.], v. 24, out. 2019. Elsevier BV. http://dx.doi.org/10.1016/j.teac.2019.e00068.
- [33] CATARINO, Michel F; ZUANON, Jansen. Feeding ecology of the leaf fish Monocirrhus polyacanthus (Perciformes: polycentridae) in a terra firme stream in the brazilian amazon. **Neotropical Ichthyology**, [S.L.], v. 8, n. 1, p. 183-186, mar. 2010. FapUNIFESP (SciELO). http://dx.doi.org/10.1590/s1679-62252010000100022.
- [34] CEBRIAN, Just. Role of first-order consumers in ecosystem carbon flow. **Ecology Letters**, [S.L.], v. 7, n. 3, p. 232-240, 24 fev. 2004. Wiley. http://dx.doi.org/10.1111/j.1461-0248.2004.00574.x.
- [35] CHAPRON, L. et al. Macro- and microplastics affect cold-water corals growth, feeding and behaviour. **Scientific reports**, v. 8, n. 1, 2018. https://doi.org/10.1038/s41598-018-33683-6
- [36] CHENG, Wei; LI, Xiaolan; ZHOU, Yue; YU, Hengyi; XIE, Yichun; GUO, Huaqi; WANG, Hui; LI, Yan; FENG, Yan; WANG, Yan. Polystyrene microplastics induce hepatotoxicity and disrupt lipid metabolism in the liver organoids. Science Of the Total Environment, [S.L.], v. 806, p. 150328, fev. 2022. Elsevier BV. http://dx.doi.org/10.1016/j.scitotenv.2021.150328.

- [37] CLARK, B. L. et al. Global assessment of marine plastic exposure risk for oceanic birds. Nature communications, v. 14, n. 1, 2023. https://doi.org/10.1038/s41467-023-38900-z
- [38] COLFERAI, André S.; SILVA-FILHO, Rodolfo Pinho; MARTINS, Aryse Moreira; BUGONI, Leandro. Distribution pattern of anthropogenic marine debris along the gastrointestinal tract of green turtles (Chelonia mydas) as implications for rehabilitation. Marine Pollution Bulletin, [S.L.], v. 119, n. 1, p. 231-237, jun. 2017. Elsevier BV. http://dx.doi.org/10.1016/j.marpolbul.2017.03.053.
- [39] COLE, M. The impacts of microplastics on zooplankton. PhD Thesis, Univ. Exet. GB 137, 2014. Disponível em: https://core.ac.uk/down-load/pdf/20551539.pdf
- [40] CORINALDESI, C. et al. Multiple impacts of microplastics can threaten marine habitat-forming species. Communications biology, v. 4, n. 1, 2021. https://doi.org/10.1038/s42003-021-01961-1
- [41] COSTA, Mercia Barcellos da; SANTOS, Macley Oliveira dos; VIEGAS, Gloria Maria de Farias; OCARIS, Enrique Ronald Yapuchura; CANI-ÇALI, Felipe Barcellos; COZER, Caroline dos Reis; ZAMPROGNO, Gabriela Carvalho; OTEGUI, Mariana Beatriz Paz. Quantitative evaluation of microplastics in colonies of Phragmatopoma caudata Krøyer in Mörch, 1863 (Polychaeta-Sabellariidae): analysis in sandcastles and tissues and identification via raman spectroscopy. Marine Pollution Bulletin, [S.L.], v. 165, p. 112127, abr. 2021. Elsevier BV. http://dx.doi.org/10.1016/j.marpolbul.2021.112127.
- [42] COSTA, M.B. da OTEGUI, M.B.P., ZAMPROGNO, G.C., CANIÇALI, F.B., DOS REIS COZER, C., PELLETIER, E., Graceli, J.B., 2023. Abundance, composition, and distribution of microplastics in intertidal sediment and soft tissues of four species of Bivalvia from Southeast Brazilian urban beaches. Science of The Total Environment 857, 159352, 2023. https://doi.org/10.1016/j.scitotenv.2022.159352
- [43] COTTOM, Joshua W.; COOK, Ed; VELIS, Costas A. A local-to-global emissions inventory of macroplastic pollution. Nature, [S.L.], v. 633, n. 8028, p. 101-108, 4 set. 2024. Springer Science and Business Media LLC. http://dx.doi.org/10.1038/s41586-024-07758-6.
- [44] DING, Jiannan; ZHANG, Shanshan; RAZANAJATOVO, Roger Mamitiana; ZOU, Hua; ZHU, Wenbin. Accumulation, tissue distribution, and biochemical effects of polystyrene microplastics in the freshwater fish red tilapia (Oreochromis niloticus). **Environmental Pollution**, [S.L.], v. 238, p. 1-9, jul. 2018. Elsevier BV. http://dx.doi.org/10.1016/j.envpol.2018.03.001.
- [45] DING, Jinfeng; SUN, Yunmei; HE, Changfei; LI, Jingxi; LI, Fengmin. Towards Risk Assessments of Microplastics in Bivalve Mollusks Globally. Journal Of Marine Science and Engineering, [S.L.], v. 10, n. 2, p. 288, 19 fev. 2022. MDPI AG. http://dx.doi.org/10.3390/jmse10020288.
- [46] DUNCAN, Emily M.; BRODERICK, Annette C.; FULLER, Wayne J.; GALLOWAY, Tamara S.; GODFREY, Matthew H.; HAMANN, Mark; LIMPUS, Colin J.; LINDEQUE, Penelope K.; MAYES, Andrew G.; OMEYER, Lucy C. M. Microplastic ingestion ubiquitous in marine turtles. Global Change Biology, [S.L.], v. 25, n. 2, p. 744-752, 4 dez. 2018. Wiley. http://dx.doi.org/10.1111/gcb.14519.
- [47] DUNCAN, E. M. et al., Diet-related selectivity of macroplastic ingestion in green turtles (*Chelonia mydas*) in the eastern Mediterranean. **Scientific reports**, v. 9, n. 1, 2019b. https://doi.org/10.1038/s41598-019-48086-4
- [48] EMMONOT, Flore; SIEGRIST, Blandine; BORDIN, Amandine; REIS, Virginie dos; CHEVALLIER, Damien; ESTEVEZ, Yannick; THOISY, Benoit de. Marine pollution between gyres: plastic debris in marine turtles and dolphins in french guiana, equatorial atlantic. Latin American Journal of Aquatic Research, [S.L.], v. 51, n. 3, p. 459-465, 2 jul. 2023. Pontificia Universidad Catolica de Valparaiso. http://dx.doi.org/10.3856/vol51-issue3-fulltext-2923.
- [49] ERIKSEN, M. et al. A growing plastic smog, now estimated to be over 170 trillion plastic particles afloat in the world's oceans—Urgent solutions required. PloS one, v. 18, n. 3, p. https://doi.org/10.1371%2Fjournal.pone.0281596
- [50] EUNOMIA. Plastics in the marine environment. 2016. Disponível em: https://www.eunomia.co.uk/reportstools/plastics-in-the-marine-environment/.
- [51] FENG, Limin; HE, Lei; JIANG, Shiqi; CHEN, Jinjun; ZHOU, Chunxia; QIAN, Zhong-Ji; HONG, Pengzhi; SUN, Shengli; LI, Chengyong. Investigating the composition and distribution of microplastics surface biofilms in coral areas. **Chemosphere**, [S.L.], v. 252, p. 126565, ago. 2020. Elsevier BV. http://dx.doi.org/10.1016/j.chemosphere.2020.126565.
- [52] FORREST, A. et al. Eliminating plastic pollution: How a voluntary contribution from industry will drive the circular plastics economy. Frontiers in marine science, v. 6, 2019. https://doi.org/10.3389/fmars.2019.00627
- [53] FRANZELLITTI, Silvia; CANESI, Laura; AUGUSTE, Manon; WATHSALA, Rajapaksha H.G.R.; FABBRI, Elena. Microplastic exposure and effects in aquatic organisms: a physiological perspective. Environmental Toxicology and Pharmacology, [S.L.], v. 68, p. 37-51, maio 2019. Elsevier BV. http://dx.doi.org/10.1016/j.etap.2019.03.009.
- [54] FREE, Christopher M.; JENSEN, Olaf P.; MASON, Sherri A.; ERIKSEN, Marcus; WILLIAMSON, Nicholas J.; BOLDGIV, Bazartseren. High levels of microplastic pollution in a large, remote, mountain lake. Marine Pollution Bulletin, [S.L.], v. 85, n. 1, p. 156-163, ago. 2014. Elsevier BV. http://dx.doi.org/10.1016/j.marpolbul.2014.06.001.
- [55] GALL, S.C.; THOMPSON, R.C. The impact of debris on marine life. Marine Pollution Bulletin, [S.L.], v. 92, n. 1-2, p. 170-179, mar. 2015. Elsevier BV. http://dx.doi.org/10.1016/j.marpolbul.2014.12.041.

- [56] GALLOWAY, T.S., COLE, M., LEWIS, C. Interactions of microplastic debris throughout the marine ecosystem. Nat. Ecol. Evol. 1, 1–8, 2017. https://doi.org/10.1038/s41559-017-0116
- [57] GARCÉS-ORDÓÑEZ, Ostin; MEJÍA-ESQUIVIA, Kevin Alexander; SIERRA-LABASTIDAS, Tatiana; PATIÑO, Albert; BLANDÓN, Lina Marcela; DÍAZ, Luisa F. Espinosa. Prevalence of microplastic contamination in the digestive tract of fishes from mangrove ecosystem in Cispata, Colombian Caribbean. Marine Pollution Bulletin, [S.L.], v. 154, p. 111085, maio 2020. Elsevier BV. http://dx.doi.org/10.1016/j.marpolbul.2020.111085.
- [58] GARCIA, T. D., CARDOZO, A. L. P., QUIRINO, B. A., YOFUKUJI, K. Y., GANASSIN, M. J. M., DOS SANTOS, N. C. L., & FUGI, R. Ingestion of Microplastic by Fish of Different Feeding Habits in Urbanized and Non-urbanized Streams in Southern Brazil. Water, Air, & Soil Pollution, 231(8), 434, 2020. https://doi.org/10.1007/s11270-020-04802-9
- [59] GROH, Ksenia J.; BACKHAUS, Thomas; CARNEY-ALMROTH, Bethanie; GEUEKE, Birgit; INOSTROZA, Pedro A.; LENNQUIST, Anna; LESLIE, Heather A.; MAFFINI, Maricel; SLUNGE, Daniel; TRASANDE, Leonardo. Overview of known plastic packaging-associated chemicals and their hazards. Science Of the Total Environment, [S.L.], v. 651, p. 3253-3268, fev. 2019. Elsevier BV. http://dx.doi.org/10.1016/j. scitotenv.2018.10.015.
- [60] GUTIÉRREZ, Juan Manuel; VILLAR, Silvia; PLAVAN, Alicia Acuña. Micronucleus test in fishes as indicators of environmental quality in subestuaries of the Río de la Plata (Uruguay). Marine Pollution Bulletin, [S.L.], v. 91, n. 2, p. 518-523, fev. 2015. Elsevier BV. http://dx.doi.org/10.1016/j.marpolbul.2014.10.027.
- [61] HE, Meiting; YAN, Muting; CHEN, Xiaofeng; WANG, Xukun; GONG, Han; WANG, Wenjing; WANG, Jun. Bioavailability and toxicity of microplastics to zooplankton. Gondwana Research, [S.L.], v. 108, p. 120-126, ago. 2022. Elsevier BV. http://dx.doi.org/10.1016/j. gr.2021.07.021.
- [62] HUANG, Yuyue; LI, Wei; GAO, Jie; WANG, Fang; YANG, Wei; HAN, Le; LIN, Dunmei; MIN, Bolin; ZHI, Yue; GRIEGER, Khara. Effect of microplastics on ecosystem functioning: microbial nitrogen removal mediated by benthic invertebrates. Science Of the Total Environment, [S.L.], v. 754, p. 142133, fev. 2021. Elsevier BV. http://dx.doi.org/10.1016/j.scitotenv.2020.142133.
- [63] IBGE, Agência de notícias. Censo 2022: informações de população e domicílios por setores censitários auxiliam gestão pública, 2024. Disponível em: https://agenciadenoticias.ibge.gov.br/agencia-noticias/2012-agencia-de-noticias/noticias/39525-censo-2022-informacoes-de-populacao-e-domicilios-por-setores-censitarios-auxiliam-gestao-publica
- [64] IMMERSCHITT, Isabelle; MARTENS, Andreas. Ejection, ingestion and fragmentation of mesoplastic fibres to microplastics by Anax imperator larvae (Odonata: aeshnidae). **Odonatologica**, [S.L.], 2020. Zenodo. http://dx.doi.org/10.5281/ZENODO.3823329.
- [65] JAMBECK, Jenna R.; GEYER, Roland; WILCOX, Chris; SIEGLER, Theodore R.; PERRYMAN, Miriam; ANDRADY, Anthony; NARAYAN, Ramani; LAW, Kara Lavender. Plastic waste inputs from land into the ocean. **Science**, [S.L.], v. 347, n. 6223, p. 768-771, 13 fev. 2015. American Association for the Advancement of Science (AAAS). http://dx.doi.org/10.1126/science.1260352.
- [66] JANKAUSKAS, Laura; PINHO, Grasiela Lopes Leães; SANZ-LAZARO, Carlos; CASADO-COY, Nuria; RANGEL, Danilo Freiras; RIBEIRO, Victor Vasques; CASTRO, Ítalo Braga. Microplastic in clams: an extensive spatial assessment in south brazil. Marine Pollution Bulletin, [S.L.], v. 201, p. 116203, abr. 2024. Elsevier BV. http://dx.doi.org/10.1016/j.marpolbul.2024.116203.
- [67] JEYAVANI, Jeyaraj; SIBIYA, Ashokkumar; BHAVANIRAMYA, Sundaresan; MAHBOOB, Shahid; AL-GHANIM, Khalid A.; NISA, Zaib-Un; RIAZ, Mian Nadeem; NICOLETTI, Marcello; GOVINDARAJAN, Marimuthu; VASEEHARAN, Baskaralingam. Toxicity evaluation of polypropylene microplastic on marine microcrustacean Artemia salina: an analysis of implications and vulnerability. Chemosphere, [S.L.], v. 296, p. 133990, jun. 2022. Elsevier BV. http://dx.doi.org/10.1016/j.chemosphere.2022.133990.
- [68] KIBRIA, Golam; NUGEGODA, Dayanthi; HAROON, A. K. Yousuf. Microplastic Pollution and Contamination of Seafood (Including Fish, Sharks, Mussels, Oysters, Shrimps and Seaweeds): a global overview. Emerging Contaminants and Associated Treatment Technologies, [S.L.], p. 277-322, 2022. Springer International Publishing. http://dx.doi.org/10.1007/978-3-030-89220-3_14.
- [69] KIM, Sang A; KIM, Lia; KIM, Tae Hee; AN, Youn-Joo. Assessing the size-dependent effects of microplastics on zebrafish larvae through fish lateral line system and gut damage. Marine Pollution Bulletin, [S.L.], v. 185, p. 114279, dez. 2022. Elsevier BV. http://dx.doi.org/10.1016/j. marpolbul.2022.114279.
- [70] KOOI, Merel; VAN NES, Egbert H.; SCHEFFER, Marten; KOELMANS, Albert A. Ups and Downs in the Ocean: effects of biofouling on vertical transport of microplastics. Environmental Science & Technology, [S.L.], v. 51, n. 14, p. 7963-7971, 29 jun. 2017. American Chemical Society (ACS). http://dx.doi.org/10.1021/acs.est.6b04702.
- [71] KÜHN, Susanne; VAN FRANEKER, Jan Andries. Quantitative overview of marine debris ingested by marine megafauna. Marine Pollution Bulletin, [S.L.], v. 151, p. 110858, fev. 2020. Elsevier BV. http://dx.doi.org/10.1016/j.marpolbul.2019.110858.
- [72] LAMB, Joleah B.; WILLIS, Bette L.; FIORENZA, Evan A.; COUCH, Courtney S.; HOWARD, Robert; RADER, Douglas N.; TRUE, James D.; KELLY, Lisa A.; AHMAD, Awaludinnoer; JOMPA, Jamaluddin. Plastic waste associated with disease on coral reefs. Science, [S.L.], v. 359, n. 6374, p. 460-462, 26 jan. 2018. American Association for the Advancement of Science (AAAS). http://dx.doi.org/10.1126/science.aar3320.

- [73] LASKAR, Nirban; KUMAR, Upendra. Plastics and microplastics: a threat to environment. **Environmental Technology & Innovation**, [S.L.], v. 14, p. 100352, maio 2019. Elsevier BV. http://dx.doi.org/10.1016/j.eti.2019.100352.
- [74] LEBRETON, Laurent C. M.; ZWET, Joost van Der; DAMSTEEG, Jan-Willem; SLAT, Boyan; ANDRADY, Anthony; REISSER, Julia. River plastic emissions to the world's oceans. **Nature Communications**, [S.L.], v. 8, n. 1, 7 jun. 2017. Springer Science and Business Media LLC. http://dx.doi.org/10.1038/ncomms15611.
- [75] LI, Jiana; YANG, Dongqi; LI, Lan; JABEEN, Khalida; SHI, Huahong. Microplastics in commercial bivalves from China. **Environmental Pollution**, [S.L.], v. 207, p. 190-195, dez. 2015. Elsevier BV. http://dx.doi.org/10.1016/j.envpol.2015.09.018.
- [76] LIAO, Chun-Pei; CHIU, Ching-Chun; HUANG, Hsiang-Wen. Assessment of microplastics in oysters in coastal areas of Taiwan. Environmental Pollution, [S.L.], v. 286, out. 2021. Elsevier BV. http://dx.doi.org/10.1016/j.envpol.2021.117437.
- [77] LIMA, Felipe P.; AZEVEDO-SANTOS, Valter M.; SANTOS, Viviane M. R.; VIDOTTO-MAGNONI, Ana P.; SOARES, Cláudio L.; MANZANO, Felipe V.; NOBILE, André B. Plastic Ingestion by Commercial and Non-Commercial Fishes from a Neotropical River Basin. Water, Air, & Soil Pollution, [S.L.], v. 232, n. 1, p. 0-0, jan. 2021. Springer Science and Business Media LLC. http://dx.doi.org/10.1007/s11270-020-04964-6.
- [78] LÓPEZ-MARTÍNEZ, Sergio; MORALES-CASELLES, Carmen; KADAR, Julianna; RIVAS, Marga L. Overview of global status of plastic presence in marine vertebrates. **Global Change Biology**, [S.L.], v. 27, n. 4, p. 728-737, 21 nov. 2020. Wiley. https://dx.doi.org/10.1111/gcb.15416.
- [79] MACHADO, Anderson Abel de Souza; KLOAS, Werner; ZARFL, Christiane; HEMPEL, Stefan; RILLIG, Matthias C. Microplastics as an emerging threat to terrestrial ecosystems. **Global Change Biology**, [S.L.], v. 24, n. 4, p. 1405-1416, 31 jan. 2018. Wiley. http://dx.doi. org/10.1111/gcb.14020.
- [80] MACLEOD, Matthew; ARP, Hans Peter H.; TEKMAN, Mine B.; JAHNKE, Annika. The global threat from plastic pollution. **Science**, [S.L.], v. 373, n. 6550, p. 61-65, 2 jul. 2021. American Association for the Advancement of Science (AAAS). http://dx.doi.org/10.1126/science.abg5433.
- [81] MALLORY, Mark L.. Marine plastic debris in northern fulmars from the Canadian high Arctic. Marine Pollution Bulletin, [S.L.], v. 56, n. 8, p. 1501-1504, ago. 2008. Elsevier BV. http://dx.doi.org/10.1016/j.marpolbul.2008.04.017.
- [82] MAZARIS, Antonios D.; SCHOFIELD, Gail; GKAZINOU, Chrysoula; ALMPANIDOU, Vasiliki; HAYS, Graeme C. Global Sea turtle conservation successes. Science Advances, [S.L.], v. 3, n. 9, set. 2017. American Association for the Advancement of Science (AAAS). http://dx.doi.org/10.1126/sciadv.1600730.
- [83] MCCAULEY, S. J.; BJORNDAL, K. A. Conservation implications of dietary dilution from debris ingestion: Sublethal effects in post-hatchling loggerhead sea turtles. **Conservation biology**: the journal of the Society for Conservation Biology, v. 13, n. 4, p. 925–929, 1999. https://digitalcommons.calpoly.edu/bio_fac/297
- [84] MCNEISH, R. E.; KIM, L. H.; BARRETT, H. A.; MASON, S. A.; KELLY, J. J.; HOELLEIN, T. J. Microplastic in riverine fish is connected to species traits. Scientific Reports, [S.L.], v. 8, n. 1, p. 1-12, 3 ago. 2018. Springer Science and Business Media LLC. http://dx.doi.org/10.1038/s41598-018-29980-9.
- [85] MENEZES, Maiara; DIAS, Juliana Déo; LONGO, Guilherme O. Plastic debris decrease fish feeding pressure on tropical reefs. Marine Pollution Bulletin, [S.L.], v. 185, dez. 2022. Elsevier BV. http://dx.doi.org/10.1016/j.marpolbul.2022.114330.
- [86] MONTEIRO, Raqueline; ANDRADES, Ryan; NOLETO-FILHO, Eurico; PEGADO, Tamyris; MORAIS, Leonardo; GONÇALVES, Myckey; SANTOS, Robson; SBRANA, Alice; FRANCESCHINI, Simone; SOARES, Marcelo O. GLOVE: the global plastic ingestion initiative for a cleaner world. Marine Pollution Bulletin, [S.L.], v. 185, dez. 2022. Elsevier BV. http://dx.doi.org/10.1016/j.marpolbul.2022.114244.
- [87] MORALES-CASELLES, Carmen; VIEJO, Josué; MARTÍ, Elisa; GONZÁLEZ-FERNÁNDEZ, Daniel; PRAGNELL-RAASCH, Hannah; GONZÁLEZ-GORDILLO, J. Ignacio; MONTERO, Enrique; ARROYO, Gonzalo M.; HANKE, Georg; SALVO, Vanessa S. An inshore-offshore sorting system revealed from global classification of ocean litter. Nature Sustainability, [S.L.], v. 4, n. 6, p. 484-493, 10 jun. 2021. Springer Science and Business Media LLC. http://dx.doi.org/10.1038/s41893-021-00720-8.
- [88] MUNCKE, Jane. Tackling the toxics in plastics packaging. Plos Biology, [S.L.], v. 19, n. 3, p. 3000961, 30 mar. 2021. Public Library of Science (PLoS). http://dx.doi.org/10.1371/journal.pbio.3000961.
- [89] MURPHY, Erin L.; GERBER, Leah R.; ROCHMAN, Chelsea M.; POLIDORO, Beth. A macroplastic vulnerability index for marine mammals, seabirds, and sea turtles in Hawaii. Science of The Total Environment, [S.L.], v. 908, jan. 2024. Elsevier BV. http://dx.doi.org/10.1016/j. scitotenv.2023.168247.
- [90] NELMS, Sarah E.; DUNCAN, Emily M.; BRODERICK, Annette C.; GALLOWAY, Tamara S.; GODFREY, Matthew H.; HAMANN, Mark; LINDEQUE, Penelope K.; GODLEY, Brendan J. Plastic and marine turtles: a review and call for research. Ices Journal of Marine Science: Journal du Conseil, [S.L.], v. 73, n. 2, p. 165-181, 9 out. 2015. Oxford University Press (OUP). http://dx.doi.org/10.1093/icesjms/fsv165.

- [91] NERES-LIMA, Vinicius; MACHADO-SILVA, Fausto; BAPTISTA, Darcilio F.; OLIVEIRA, Renata B. S.; ANDRADE, Pedro M.; OLIVEIRA, Andrea F.; SASADA-SATO, Cristiano Y.; SILVA-JUNIOR, Eduardo F.; FEIJÓ-LIMA, Rafael; ANGELINI, Ronaldo. Allochthonous and autochthonous carbon flows in food webs of tropical forest streams. Freshwater Biology, [S.L.], v. 62, n. 6, p. 1012-1023, 28 mar. 2017. Wiley. http://dx.doi.org/10.1111/fwb.12921.
- [92] NUNES, Beatriz Zachello; HUANG, Yuyue; RIBEIRO, Victor Vasques; WU, Siqi; HOLBECH, Henrik; MOREIRA, Lucas Buruaem; XU, Elvis Genbo; CASTRO, Italo B. Microplastic contamination in seawater across global marine protected areas boundaries. **Environmental Pollution**, [S.L.], v. 316, jan. 2023. Elsevier BV. http://dx.doi.org/10.1016/j.envpol.2022.120692.
- [93] NUNES, Beatriz Zachello; MOREIRA, Lucas Buruaem; XU, Elvis Genbo; CASTRO, Ítalo Braga. A global snapshot of microplastic contamination in sediments and biota of marine protected areas. Science Of the Total Environment, [S.L.], v. 865, mar. 2023. Elsevier BV. http://dx.doi.org/10.1016/j.scitotenv.2022.161293.
- [94] OCEANA BRASIL Um oceano livre de plástico: desafios para reduzir a poluição marinha no Brasil. 1ª ed. Brasília, DF, 2020.
- [95] OCEANA. **Just one word**: refillables. How the soft drink industry can right now reduce marine plastic pollution by billions of bottles each year. January 2020. Disponível em: https:// oceana.org/publications/reports/just-one-word-refillables.
- [96] OCKENDEN, Amy; TREMBLAY, Louis A.; DIKAREVA, Nadia; SIMON, Kevin S.. Towards more ecologically relevant investigations of the impacts of microplastic pollution in freshwater ecosystems. Science of the Total Environment, [S.L.], v. 792, p. 148507, out. 2021. Elsevier BV. http://dx.doi.org/10.1016/j.scitotenv.2021.148507.
- [97] OEHLMANN, Jörg; SCHULTE-OEHLMANN, Ulrike; KLOAS, Werner; JAGNYTSCH, Oana; LUTZ, Ilka; KUSK, Kresten O.; WOLLEN-BERGER, Leah; SANTOS, Eduarda M.; PAULL, Gregory C.; VAN LOOK, Katrien J. W. A critical analysis of the biological impacts of plasticizers on wildlife. Philosophical Transactions of The Royal Society B: Biological Sciences, [S.L.], v. 364, n. 1526, p. 2047-2062, 27 jul. 2009. The Royal Society. http://dx.doi.org/10.1098/rstb.2008.0242.
- [98] OLIVEIRA, S., KRELLING, A.P., TURRA, A. Contamination by microplastics in oysters shows a widespread but patchy occurrence in a subtropical estuarine system. Marine Pollution Bulletin 203, 116380, 2024. https://doi.org/10.1016/j.marpolbul.2024.116380
- [99] OTEGUI, Mariana Beatriz Paz; SCHUAB, João Marcos; FRANÇA, Millena Araujo; CANIÇALI, Felipe Barcellos; YAPUCHURA, Enrique Ronald; ZAMPROGNO, Gabriela Carvalho; COSTA, Mercia Barcellos da. Microplastic contamination in different shell length in Tivela mactroides (Born, 1778). Science Of the Total Environment, [S.L.], v. 922, abr. 2024. Elsevier BV. http://dx.doi.org/10.1016/j.scitotenv.2024.171283.
- [100] OUYANG, Ming-Yan; LIU, Jun-Heng; WEN, Bin; HUANG, Jun-Nan; FENG, Xiao-Sa; GAO, Jian-Zhong; CHEN, Zai-Zhong. Ecological stoichiometric and stable isotopic responses to microplastics are modified by food conditions in koi carp. Journal Of Hazardous Materials, [S.L.], v. 404, p. 124121, fev. 2021. Elsevier BV. http://dx.doi.org/10.1016/j.jhazmat.2020.124121.
- [101] OZTURK, R.C., ALTINOK, I. Interaction of plastics with marine species. Turkish J. Fish. Aquat. Sci. 20, 647–658, 2020. https://doi.org/10.4194/1303-2712-v20_8_07
- [102] PAGANOS, Periklis; ULLMANN, Clemens Vinzenz; GAGLIO, Daniela; BONANOMI, Marcella; SALMISTRARO, Noemi; ARNONE, Maria Ina; JIMENEZ-GURI, Eva. Plastic leachate-induced toxicity during sea urchin embryonic development: insights into the molecular pathways affected by pvc. Science Of the Total Environment, [S.L.], v. 864, p. 160901, mar. 2023. Elsevier BV. http://dx.doi.org/10.1016/j. scitotenv.2022.160901.
- [103] PARKER, Ben; ANDREOU, Demetra; GREEN, Iain D.; BRITTON, J. Robert. Microplastics in freshwater fishes: occurrence, impacts and future perspectives. Fish And Fisheries, [S.L.], v. 22, n. 3, p. 467-488, 29 jan. 2021. Wiley. http://dx.doi.org/10.1111/faf.12528.
- [104] PATHAK T. e IST P. Explained/Decoding the mystery of plastic rocks discovered on five continents. World is One News (WION). 2023. Avaiable: https://www.wionews.com/science/decoding-the-mystery-of-plastic-rocks-discovered-on-five-continents-670869
- [105] PESTANA, Carlos J.; MOURA, Diana S.; CAPELO-NETO, José; EDWARDS, Christine; DREISBACH, Domenic; SPENGLER, Bernhard; LAWTON, Linda A. Potentially Poisonous Plastic Particles: microplastics as a vector for cyanobacterial toxins microcystin-Ir and microcystin-If. Environmental Science & Technology, [S.L.], v. 55, n. 23, p. 15940-15949, 11 nov. 2021. American Chemical Society (ACS). http://dx.doi.org/10.1021/acs.est.1c05796.
- [106] PETERS, Colleen A.; BRATTON, Susan P. Urbanization is a major influence on microplastic ingestion by sunfish in the Brazos River Basin, Central Texas, USA. Environmental Pollution, [S.L.], v. 210, p. 380-387, mar. 2016. Elsevier BV. http://dx.doi.org/10.1016/j.envpol.2016.01.018.
- [107] PETERS, Colleen A.; THOMAS, Peyton A.; RIEPER, Kaitlyn B.; BRATTON, Susan P. Foraging preferences influence microplastic ingestion by six marine fish species from the Texas Gulf Coast. Marine Pollution Bulletin, [S.L.], v. 124, n. 1, p. 82-88, nov. 2017. Elsevier BV. http://dx.doi.org/10.1016/j.marpolbul.2017.06.080.
- [108] PETROBRAS. Relatório Técnico Anual (2015-2016): PMP-BS Fase 1 (Gerenciamento e Execução do Projeto de Monitoramento de Praias da Bacia de Santos Fase 1) (p. 254). Itajaí, SC: UNIVALI/PETROBRAS. 2017.

- [109] PETROBRAS. Relatório Técnico Anual (2017-2018): PMP-BS Fase 1 (Gerenciamento e Execução do Projeto de Monitoramento de Praias da Bacia de Santos Fase 1) (p. 401). Itajaí, SC: UNIVALI/PETROBRAS. 2019.
- [110] PINHEIRO, Hudson T.; MACDONALD, Chancey; SANTOS, Robson G.; ALI, Ramadhoine; BOBAT, Ayesha; CRESSWELL, Benjamin J.; FRANCINI-FILHO, Ronaldo; FREITAS, Rui; GALBRAITH, Gemma F.; MUSEMBI, Peter. Plastic pollution on the world's coral reefs. Nature, [S.L.], v. 619, n. 7969, p. 311-316, 12 jul. 2023. Springer Science and Business Media LLC. http://dx.doi.org/10.1038/s41586-023-06113-5.
- [111] POORE, Alistair G. B.; CAMPBELL, Alexandra H.; COLEMAN, Ross A.; EDGAR, Graham J.; JORMALAINEN, Veijo; REYNOLDS, Pamela L.; SOTKA, Erik E.; STACHOWICZ, John J.; TAYLOR, Richard B.; VANDERKLIFT, Mathew A. Global patterns in the impact of marine herbivores on benthic primary producers. **Ecology Letters**, [S.L.], v. 15, n. 8, p. 912-922, 29 maio 2012. Wiley. http://dx.doi.org/10.1111/j.1461-0248.2012.01804.x.
- [112] PRADO, Jonatas H. F.; MATTOS, Paulo H.; SILVA, Kleber G.; SECCHI, Eduardo R. Long-Term Seasonal and Interannual Patterns of Marine Mammal Strandings in Subtropical Western South Atlantic. Plos One, [S.L.], v. 11, n. 1, 27 jan. 2016. Public Library of Science (PLoS). http://dx.doi.org/10.1371/journal.pone.0146339.
- [113] PROGRAMA DAS NAÇÕES UNIDAS PARA O MEIO AMBIENTE (PNUMA). From pollution to solution: a global assessment of marine litter and plastic pollution. PNUMA, 2021.
- [114] PROKIć, Marko D.; RADOVANOVIć, Tijana B.; GAVRIć, Jelena P.; FAGGIO, Caterina. Ecotoxicological effects of microplastics: examination of biomarkers, current state and future perspectives. **Trac Trends in Analytical Chemistry**, [S.L.], v. 111, p. 37-46, fev. 2019. Elsevier BV. http://dx.doi.org/10.1016/j.trac.2018.12.001.
- [115] PROVENCHER, Jennifer F.; BOND, Alexander L.; HEDD, April; MONTEVECCHI, William A.; MUZAFFAR, Sabir Bin; COURCHESNE, Sarah J.; GILCHRIST, H. Grant; JAMIESON, Sarah E.; MERKEL, Flemming R.; FALK, Knud. Prevalence of marine debris in marine birds from the North Atlantic. Marine Pollution Bulletin, [S.L.], v. 84, n. 1-2, p. 411-417, jul. 2014. Elsevier BV. http://dx.doi.org/10.1016/j.marpolbul.2014.04.044.
- [116] PRUDENTE, B. da S., POMPEU, P. S., & MONTAG, L. Using multimetric indices to assess the effect of reduced impact logging on ecological integrity of Amazonian streams. Ecological Indicators, 91(April), 315–323, 2018. https://doi.org/10.1016/j.ecolind.2018.04.020
- [117] PRUDENTE, Bruno S.; POMPEU, Paulo S.; JUEN, Leandro; MONTAG, Luciano F. A. Effects of reduced-impact logging on physical habitat and fish assemblages in streams of Eastern Amazonia. Freshwater Biology, [S.L.], v. 62, n. 2, p. 303-316, dez. 2016. Wiley. http://dx.doi. org/10.1111/fwb.12868.
- [118] QIAO, Ruxia; DENG, Yongfeng; ZHANG, Shenghu; WOLOSKER, Marina Borri; ZHU, Qiande; REN, Hongqiang; ZHANG, Yan. Accumulation of different shapes of microplastics initiates intestinal injury and gut microbiota dysbiosis in the gut of zebrafish. Chemosphere, [S.L.], v. 236, p. 124334, dez. 2019. Elsevier BV. http://dx.doi.org/10.1016/j.chemosphere.2019.07.065.
- [119] RIBEIRO-BRASIL, Danielle Regina Gomes; TORRES, Naiara Raiol; PICANÇO, Ana Beatriz; SOUSA, David Silva; RIBEIRO, Vanessa Serrão; BRASIL, Leandro Schlemmer; MONTAG, Luciano Fogaça de Assis. Contamination of stream fish by plastic waste in the Brazilian Amazon. Environmental Pollution, [S.L.], v. 266, p. 115241, nov. 2020. Elsevier BV. http://dx.doi.org/10.1016/j.envpol.2020.115241.
- [120] RIBEIRO, Victor Vasques; NOBRE, Caio Rodrigues; MORENO, Beatriz Barbosa; SEMENSATTO, Décio; SANZ-LAZARO, Carlos; MOREIRA, Lucas Buruaem; CASTRO, Ítalo Braga. Oysters and mussels as equivalent sentinels of microplastics and natural particles in coastal environments. Science Of the Total Environment, [S.L.], v. 874, p. 162468, maio 2023. Elsevier BV. http://dx.doi.org/10.1016/j. scitotenv.2023.162468.
- [121] RIBEIRO, Victor Vasques; SOARES, Thaiza Maria Avelino; DE-LA-TORRE, Gabriel Enrique; CASADO-COY, Nuria; SANZ-LAZARO, Carlos; CASTRO, Ítalo Braga. Microplastics in rocky shore mollusks of different feeding habits: an assessment of sentinel performance. Environmental Pollution, [S.L.], v. 346, p. 123571, abr. 2024. Elsevier BV. http://dx.doi.org/10.1016/j.envpol.2024.123571.
- [122] ROBUCK, Anna R.; HUDAK, Christine A.; AGVENT, Lindsay; EMERY, Gwenyth; RYAN, Peter G.; PEROLD, Vonica; POWERS, Kevin D.; PEDERSEN, Johanna; THOMPSON, Michael A.; SUCA, Justin J. Birds of a Feather Eat Plastic Together: high levels of plastic ingestion in great shearwater adults and juveniles across their annual migratory cycle. Frontiers In Marine Science, [S.L.], v. 8, 5 jan. 2022. Frontiers Media SA. http://dx.doi.org/10.3389/fmars.2021.719721.
- [123] ROCH, S.; FRIEDRICH, C.; BRINKER, A. Uptake routes of microplastics in fishes: practical and theoretical approaches to test existing theories. Scientific Reports, [S.L.], v. 10, n. 1, 3 mar. 2020. Springer Science and Business Media LLC. http://dx.doi.org/10.1038/s41598-020-60630-1.
- [124] ROCHMAN, Chelsea M.; HOH, Eunha; KUROBE, Tomofumi; TEH, Swee J. Ingested plastic transfers hazardous chemicals to fish and induces hepatic stress. Scientific Reports, [S.L.], v. 3, n. 1, p. 0, 21 nov. 2013. Springer Science and Business Media LLC. http://dx.doi. org/10.1038/srep03263.
- [125] ROMAN, Lauren; HARDESTY, Britta Denise; HINDELL, Mark A.; WILCOX, Chris. A quantitative analysis linking seabird mortality and marine debris ingestion. Scientific Reports, [S.L.], v. 9, n. 1, p. 0-0, 1 mar. 2019. Springer Science and Business Media LLC. http://dx.doi. org/10.1038/s41598-018-36585-9.

- [126] ROTJAN, Randi D.; SHARP, Koty H.; GAUTHIER, Anna E.; YELTON, Rowan; LOPEZ, Eliya M. Baron; CARILLI, Jessica; KAGAN, Jonathan C.; URBAN-RICH, Juanita. Patterns, dynamics and consequences of microplastic ingestion by the temperate coral, Astrangia poculata. Proceedings Of the Royal Society B: Biological Sciences, [S.L.], v. 286, n. 1905, p. 20190726, 26 jun. 2019. The Royal Society. http://dx.doi.org/10.1098/rspb.2019.0726.
- [127] ROY, Allison H; FAUST, Christina L; FREEMAN, Mary C; MEYER, Judith L. Reach-scale effects of riparian forest cover on urban stream ecosystems. Canadian Journal of Fisheries and Aquatic Sciences, [S.L.], v. 62, n. 10, p. 2312-2329, 1 out. 2005. Canadian Science Publishing. http://dx.doi.org/10.1139/f05-135.
- [128] SALDAÑA-SERRANO, Miguel; BASTOLLA, Camila L.V.; MATTOS, Jacó J.; LIMA, Daína; FREIRE, Thaís B.; NOGUEIRA, Diego José; DE-LA-TORRE, Gabriel Enrique; RIGHETTI, Bárbara P.H.; ZACCHI, Flávia L.; GOMES, Carlos H.A.M. Microplastics and linear alkylbenzene levels in oysters Crassostrea gigas driven by sewage contamination at an important aquaculture area of Brazil. Chemosphere, [S.L.], v. 307, p. 136039, nov. 2022. Elsevier BV. http://dx.doi.org/10.1016/j.chemosphere.2022.136039.
- [129] SANTANA, Marina F. M.; MOREIRA, Fabiana T.; PEREIRA, Camilo D. S.; ABESSA, Denis M. S.; TURRA, Alexander. Continuous Exposure to Microplastics Does Not Cause Physiological Effects in the Cultivated Mussel Perna perna. Archives Of Environmental Contamination and Toxicology, [S.L.], v. 74, n. 4, p. 594-604, 19 jan. 2018. Springer Science and Business Media LLC. http://dx.doi.org/10.1007/s00244-018-0504-3.
- [130] SANTOS, R. G. et al. Debris ingestion by juvenile marine turtles: An underestimated problem. Marine Pollution Bulletin, v. 93, n. 1–2, p. 37–43, 2015. Disponível em: https://doi.org/10.1016/j.marpolbul.2015.02.022.
- [131] SANTOS, R. G. et al. Exploring plastic-induced satiety in foraging green turtles. Environmental Pollution (Barking, Essex: 1987), v. 265, n. 114918, p. 114918, 2020. Disponível em: https://doi.org/10.1016/j.envpol.2020.114918.
- [132] SANTOS, R. G.; MACHOVSKY-CAPUSKA, G. E.; ANDRADES, R. Plastic ingestion as an evolutionary trap: Toward a holistic understanding. Science (New York, N.Y.), v. 373, n. 6550, p. 56–60, 2021. https://doi.org/10.1126/science.abh0945.
- [133] SAVOCA, M. S.; WOHLFEIL, M. E.; EBELER, S. E.; NEVITT, G. A. Marine plastic debris emits a keystone infochemical for olfactory foraging seabirds. Science Advances, v. 2, n. 11, e1600395, 2016. https://doi.org/10.1126/sciadv.1600395.
- [134] SAVOCA, M. S.; TYSON, C. W.; MCGILL, M.; SLAGER, C. J. Odours from marine plastic debris induce food search behaviours in a forage fish. Proceedings of the Royal Society B: Biological Sciences, v. 284, p. 1–8, 2017. https://doi.org/10.1098/rspb.2017.1000.
- [135] SAVOCA, M. S.; MCINTURF, A. G.; HAZEN, E. L. Plastic ingestion by marine fish is widespread and increasing. Global Change Biology, v. 27, n. 10, p. 2188–2199, 2021. https://doi.org/10.1111/gcb.15533.
- [136] SCHUYLER, Q. et al. Global analysis of anthropogenic debris ingestion by sea turtles. Conservation Biology: The Journal of the Society for Conservation Biology, v. 28, n. 1, p. 129–139, 2014. https://doi.org/10.1111/cobi.12126.
- [137] SENKO, J. F. et al. Understanding individual and population-level effects of plastic pollution on marine megafauna. **Endangered Species Research**, v. 43, p. 234–252, 2020. https://doi.org/10.3354/esr01064.
- [138] TANG, J. et al. Acute microplastic exposure raises stress response and suppresses detoxification and immune capacities in the scleractinian coral *Pocillopora damicornis*. Environmental Pollution (Barking, Essex: 1987), v. 243, p. 66–74, 2018. https://doi.org/10.1016/j.envpol.2018.08.045.
- [139] UNITED NATIONS (UN). Department of Economic and Social Affairs. Frontier Technology Quarterly: Frontier technologies for addressing plastic pollution. 2019.
- [140] URBANSKI, B. Q. et al. First record of plastic ingestion by an important commercial native fish (*Prochilodus lineatus*) in the middle Tietê River basin, Southeast Brazil. **Biota Neotropica**, v. 20, n. 3, 2020. https://doi.org/10.1590/1676-0611-BN-2020-1005.
- [141] VAN DER VEEN, I. et al. Plastic particles in livestock feed, milk, meat and blood. A pilot study. Netherlands: [s.n.], 2020.
- [142] VAN RAAMSDONK, L. W. D. et al. Current insights into monitoring, bioaccumulation, and potential health effects of microplastics present in the food chain. Foods (Basel, Switzerland), v. 9, n. 1, p. 72, 2020. https://doi.org/10.3390/foods9010072.
- [143] VANDETTE K. Plastic found at the bottom of Belize's Great Blue Hole. In: Earth.com. 2019. Available: https://www.earth.com/news/plastic-belizes-great-blue-hole/.
- [144] VANSTREELS, R. E. T. et al. Ingestion of plastics and other debris by coastal and pelagic birds along the coast of Espírito Santo, Eastern Brazil. Marine Pollution Bulletin, v. 173, n. 113046, p. 113046, 2021. https://doi.org/10.1016/j.marpolbul.2021.113046.
- [145] VASCONCELLOS, M.; GASALLA, M. A. Fisheries catches and the carrying capacity of marine ecosystems in southern Brazil. Fisheries Research, v. 50, n. 3, p. 279–295, 2001. https://doi.org/10.1016/S0165-7836(00)00217-4.

- [146] VIEIRA, K. S. et al. Occurrence of microplastics and heavy metals accumulation in native oysters *Crassostrea gasar* in the Paranaguá estuarine system, Brazil. Marine Pollution Bulletin, v. 166, 112225, 2021. https://doi.org/10.1016/j.marpolbul.2021.112225.
- [147] WOOTTON, N.; REIS-SANTOS, P.; GILLANDERS, B. M. Microplastic in fish A global synthesis. Reviews in Fish Biology and Fisheries, v. 31, p. 753–771, 2021. https://doi.org/10.1007/s11160-021-09684-6.
- [148] WANG, J. et al. Polystyrene microplastics cause tissue damages, sex-specific reproductive disruption and transgenerational effects in marine medaka (Oryzias melastigma). Environmental Pollution, v. 254, 113024, 2019. https://doi.org/10.1016/j.envpol.2019.113024.
- [149] WANG, L.; HOU, D. Plastistone: An emerging type of sedimentary rock. Earth-Science Reviews, v. 247, n. 104620, 2023. http://dx.doi. org/10.1016/j.earscirev.2023.104620.
- [150] WANG, W.; GE, J.; YU, X.; LI, H. Environmental fate and impacts of microplastics in soil ecosystems: Progress and perspective. Science of The Total Environment, v. 708, 2020. https://doi.org/10.1016/j.scitotenv.2019.134841.
- [151] WIECZOREK, A. M. et al. Microplastic ingestion by gelatinous zooplankton may lower efficiency of the biological pump. Environmental Science & Technology, v. 53, p. 5387–5395, 2019. https://doi.org/10.1021/acs.est.8b07174.
- [152] XU, S. et al. Microplastics in aquatic environments: Occurrence, accumulation, and biological effects. Science of The Total Environment, v. 703, 134699, 2020. https://doi.org/10.1016/j.scitotenv.2019.134699.
- [153] ZACCHI, Flávia Lucena; LIMA, Daína de; FLORES-NUNES, Fabrício; MATTOS, Jacó Joaquim; LÜCHMANN, Karim Hahn; GOMES, Carlos Henrique Araújo de Miranda; BÍCEGO, Márcia Caruso; TANIGUCHI, Satie; SASAKI, Silvio Tarou; BAINY, Afonso Celso Dias. Transcriptional changes in oysters Crassostrea brasiliana exposed to phenanthrene at different salinities. Aquatic Toxicology, [S.L.], v. 183, p. 94-103, fev. 2017. Elsevier BV. http://dx.doi.org/10.1016/j.aquatox.2016.12.016.
- [154] ZENG, Ling-Qing; FU, Cheng; FU, Shi-Jian. The effects of temperature and food availability on growth, flexibility in metabolic rates and their relationships in juvenile common carp. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, [S.L.], v. 217, p. 26-34, mar. 2018. Elsevier BV. http://dx.doi.org/10.1016/j.cbpa.2017.12.01
- [155] ZETTLER, Erik R.; MINCER, Tracy J.; AMARAL-ZETTLER, Linda A.. Life in the "Plastisphere": microbial communities on plastic marine debris. Environmental Science & Technology, [S.L.], v. 47, n. 13, p. 7137-7146, 19 jun. 2013. American Chemical Society (ACS). http://dx.doi.org/10.1021/es401288x
- [156] ZHANG, Chaonan; WANG, Jun; PAN, Zhengkun; WANG, Shaodan; ZHANG, Li; WANG, Qiujie; YE, Qiao; ZHOU, Aiguo; XIE, Shaolin; ZENG, Fang. A dosage-effect assessment of acute toxicology tests of microplastic exposure in filter-feeding fish. Fish & Shellfish Immunology, [S.L.], v. 113, p. 154-161, jun. 2021. Elsevier BV. http://dx.doi.org/10.1016/j.fsi.2021.04.010.
- [157] ZHAO, Yao; BAO, Zhiwei; WAN, Zhiqing; FU, Zhengwei; JIN, Yuanxiang. Polystyrene microplastic exposure disturbs hepatic glycolipid metabolism at the physiological, biochemical, and transcriptomic levels in adult zebrafish. Science of the Total Environment, [S.L.], v. 710, p. 136279, mar. 2020. Elsevier BV. http://dx.doi.org/10.1016/j.scitotenv.2019.136279.
- [158] ZINK, Lauren; WOOD, Chris M.. The effects of microplastics on ionoregulatory processes in the gills of freshwater fish and invertebrates: a prospective review. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, [S.L.], v. 295, set. 2024. Elsevier BV. http://dx.doi.org/10.1016/j.cbpa.2024.111669.

ANEXO

CAPÍTULO 2

METODOLOGIA

O cálculo da responsabilidade do Brasil na poluição marinha por plásticos foi realizado usando a mesma metodologia de Jambeck e colaboradores no artigo *Plastic waste inputs from land into the ocean*, publicado na revista *Science*, em 2014. Esse artigo estima a quantidade total de plástico que entra no oceano a cada ano a partir de resíduos gerados por populações costeiras em todo o mundo. O Brasil aparece em 16º lugar no ranking dos 20 países com maior massa de plásticos

destinados inadequadamente. A Oceana atualizou os dados utilizados no relatório *Um Oceano Livre de Plástico - desafios para reduzir a poluição marinha no Brasil*, publicado em 2020, para cada parâmetro e, assim, obteve um valor para 2022, último ano com dados disponíveis. A **TABELA 9** abaixo, resume as variáveis e os dados utilizados por Jambeck et al (2014), assim como os dados usados pela Oceana para atualizar esse cálculo.

TABELA 9 - Variáveis e dados utilizados para calcular a contribuição do Brasil para a poluição marinha por plásticos

Parâmetros	Brasil (2010)	Brasil (2018)	Brasil (2022)	Descrição
Status econômico	UMI	UMI	UMI	UMI = <i>Upper Middle Income</i> ; classificação do Banco Mundial para o status econômico do Brasil, de acordo com a renda <i>per capita</i> . Não houve alteração desse parâmetro.
População costeira	74.696.771	81.646.480	111.280.000	Em 2010, os autores consideraram como população costeira os habitantes que vivem em cidades até 50 km do litoral, e não apenas os municípios litorâneos. Para o cálculo deste relatório, utilizamos o dado do Censo do IBGE de 2022, que apontou que 54,8% da população brasileira vive na zona costeira.

Taxa de geração de resíduo [kg/pessoa/dia]	1,03	1,03	1,04	Dados do Sistema Nacional de Informações sobre Saneamento (SNIS) indicam que são coletados 0,96 kg de resíduos/hab./dia, mas não apresentam a quantidade <i>per capita</i> de resíduos gerados por dia. Na análise produzida em 2018, conservadoramente, foi mantido o valor utilizado em 2010. Para a atualização deste relatório, foram utilizados os dados do Panorama Abrema (Associação Brasileira de Resíduos e Meio Ambiente), de 2023. Com base no total de Resíduos Sólidos Urbanos (RSU) gerado no Brasil
Parâmetros	Brasil (2010)	Brasil (2018)	Brasil (2022)	per capita/ano dividido por 365 dias. Descrição
% de plástico na composição do lixo	15,95%	16,08%	16,80%	Porcentagem do resíduo coletado que é composto por plástico. No relatório <i>Um Oceano Livre de Plástico</i> (2020), calculamos a média ponderada da fração de plástico na composição física dos resíduos coletados, disponíveis em sete Planos Estaduais de Resíduos Sólidos (AL/2010, MA/2012, PE/2010, PI/2011, RJ/2013, RN/2012, SC/2014). Para este relatório, utilizamos o valor apresentado pelo Panorama da Abrelpe 2020. Segundo a Abrelpe, a obtenção dos dados apresentados no Panorama foi feita a partir da compilação e revisão de cerca de 200 estudos, incluindo referências acadêmicas, científicas e dados primários, que contemplavam metodologias similares e mesmo um espectro temporal. A gravimetria nacional foi estimada com base na média ponderada a partir da geração total de RSU por faixa de renda dos municípios e respectivas composições, levando-se em consideração a população e geração <i>per capita</i> .
% de resíduo destinado inadequadamente	8,52%	24,38%	43,2%	Segundo Jambeck et al, são consideradas práticas inadequadas de gestão do resíduo a destinação para locais sem gestão formal, incluindo vazadouros a céu aberto ou aterros onde o resíduo não é totalmente controlado. No Brasil, é considerada inadequada toda disposição de resíduos em lixões e aterros controlados (que, em muitos municípios, se assemelham a lixões). Dados do SNIS apontam que 24,38% do resíduo coletado tem disposição final inadequada. Para este relatório, utilizamos os dados do Panorama Abrema 2023, que indica que 27,9 milhões de toneladas de resíduos sólidos urbanos coletados tiveram destinação inadequada e que 5,3 milhões de resíduos gerados não foram coletados, resultando em cerca de 33,2 milhões de toneladas ou 43,2% do resíduo gerado no Brasil em 2022.

% de resíduo jogado direto no ambiente	2%	2%	2%	Na metodologia, os autores consideram, para cada país, um volume adicional equivalente a 2% da quantidade de resíduos gerados por dia, que corresponde ao resíduo descartado de maneira inadequada nas vias públicas, nos rios, nos terrenos baldios, na areia da praia, etc. Na falta de um dado mais recente e específico para o Brasil, utilizou-se o mesmo valor considerado pelos autores e manteve-se esse valor para 2022.
Parâmetros	Brasil (2010)	Brasil (2018)	Brasil (2022)	Descrição
Geração de resíduos [kg/dia]	76.937.674	84.095.874	115.731.200	
Geração de resíduos de plásticos [kg/dia]	12.271.559	13.522.617	19.442.842	
Resíduos de plásticos destinados inadequadamente [kg/dia]	1.046.087	3.296.814	8.399.308	Cálculos realizados em planilha Excel, seguindo a metodologia dos autores, e utilizando os dados
Resíduo de plástico jogado no ambiente [kg/dia]	245.431	270.452	388.857	atualizados de 2022.
Resíduo plástico mal gerido [kg/ pessoa/dia]	0,017	0,044	0,079	
Resíduo plástico mal gerido [toneladas] no ano	471.404	1.302.052	3.207.680	-

A fonte de informação utilizada foi o Panorama Abrema 2023 e dados do último Censo do IBGE, realizado em 2023, com dados de 2022.

De acordo com Jambeck et al (2014), uma porcentagem do total de resíduos mal gerenciados chega aos oceanos por meio de córregos, rios, escoamento de águas pluviais ou esgoto, transporte por vento ou marés. Portanto, essa porcentagem é altamente variável e dependente de fatores locais de cada país, como condições climáticas, topografia

e vegetação. O estudo propõe, então, três taxas de conversão (15%, 25% e 40%), consideradas conservadoras, para estimar a massa de plástico que entrou no mar a partir de resíduos terrestres. A **TABELA 10**, abaixo, mostra o resultado obtido para o Brasil em 2010 e os resultados obtidos pela Oceana a partir dos dados de 2018 e 2022.

TABELA 10 - Resultado da contribuição do Brasil para a poluição por plástico no oceano, em 2010 e em 2018

Parâmetros	2010	2018	2022
Massa de resíduo plástico gerido inadequadamente (tons)	471.404	1.302.052	3.207.680
Massa de plástico que chega ao oceano (15%)	70.711	195.308	481.152
Massa de plástico que chega ao oceano (25%)	117.851	325.513	801.920
Massa de plástico que chega ao oceano (40%)	188.562	520.821	1.283.072

Com base nos dados atualizados, a Oceana considera que a contribuição mais provável do Brasil para a poluição marinha por plásticos é de aproximadamente 1,3 milhão de toneladas por ano (valor da probabilidade de 40%). Considerando (i) o volume de resíduos sólidos que não são coletados e que são gerenciados de forma inadequada; (ii) a quantidade de plástico descartável produzida no país todos os anos; (iii) a ineficiência dos sistemas de logística reversa para embalagens plásticas; (iv) a

inexistência de obrigatoriedade de logística reversa para itens descartáveis, como sacolas, canudos, bandejas de isopor, talheres, etc; (v) a quantidade de lixões a céu aberto; (vi) as conclusões do relatório do Tribunal de Contas da União (TCU) sobre a baixa implementação da Política Nacional de Resíduos Sólidos (PNRS); e (vii) a extensa rede hidrográfica do Brasil, dentre outros fatores, ponderamos que a faixa de probabilidade de 40% ainda assim seja bastante conservadora.

CAPÍTULO 9

ANÁLISES PMP

Projetos de Monitoramento de Praias (PMP) vêm sendo exigidos como condicionante do licenciamento de atividades que têm o potencial de gerar impactos no ambiente marinho, sejam próximas da costa, como em portos e dragagens, ou afastadas, como prospecções sísmicas e extração e transporte de petróleo. Entretanto, até 2016, apenas os registros de fauna ficavam disponíveis ao público de modo fácil, pois eram cadastrados no Sistema de Apoio ao Monitoramento de Mamíferos Marinhos - SIMMAM (Barreto et al., 2019). Com a implementação do Sistema de Informação de Monitoramento da Biota - SIMBA como parte das atividades do PMP-BS (Petrobras, 2017), os dados das necrópsias realizadas no âmbito daquele projeto passaram a ficar disponíveis para o público. Isso permite a realização de diversas pesquisas por instituições que não estão ligadas aos PMP e que tratam de assuntos que não são o alvo do licenciamento em questão (por ex. Baes et al., 2024; Cantor et al., 2020; Prado et al., 2016), incluindo o presente levantamento.

Os dados utilizados neste trabalho utilizam uma amostra que é algumas ordens de magnitude maior do que a maioria dos trabalhos publicados (Emmonot et al., 2023; López-Martínez et al., 2021; Nelms et al., 2016; Robuck et al., 2022; Wilcox et al., 2018).

As atividades dos PMP consistem no monitoramento regular das praias e o registro de animais encalhados. Os animais vivos e debilitados são encaminhados para tratamento nas instalações da rede de atendimento veterinário do projeto. Em relação aos animais mortos, caso as carcaças estejam em condições adequadas, são encaminhados para as bases do projeto, para necrópsia e identificação da causa de morte.

É preciso ressaltar que nem todos os animais encontrados nas praias são necropsiados. Os PMP têm o objetivo de avaliar o impacto das atividades de extração de óleo e gás na fauna marinha e, portanto, somente espécies marinhas são avaliadas. Muitas espécies de aves estuarinas, como as garças, não fazem parte da fauna alvo desse monitoramento. Adicionalmente, aqueles que estão em decomposição avançada não são necropsiados, uma vez que nesses casos não é possível avaliar a causa de morte. Assim, os dados que foram utilizados para este trabalho representam apenas uma parcela dos animais que podem ter ingerido plástico.

Foram utilizados dados somente a partir de 1º de janeiro de 2018 que estavam disponíveis no SIMBA (http://simba.petrobras.com.br). As informações foram extraídas do SIMBA em 20 de dezembro de 2023, utilizando um acesso do tipo "anônimo". Desse modo, apresentam dados coletados até 22 de agosto daquele mesmo ano devido à política de publicidade dos dados, acordada entre Petrobras e Ibama, de disponibilizar para o público os dados somente após 120 dias da sua coleta. Foram coletados dados da ocorrência de animais (registros de Fauna Alvo Individual – FAI) e das necrópsias executadas (exames anatomopatológicos), dos seguintes PMP:

Sigla	Estados abrangidos	Extensão monitorada
PMP-RN/CE	Rio Grande do Norte/Ceará	471 km
PMP-SE/AL	Sergipe/Alagoas	270 km
PMP-BC	Rio de Janeiro/Espírito Santo	687 km
PMP-BS	Rio de Janeiro/São Paulo/Paraná/Santa Catarina	1500 km

De acordo com a periodicidade de inserção dos dados de cada empresa responsável pelos diferentes PMP, o período de cobertura dos dados variou (**TABELA 11**).

TABELA 11 - Abrangência temporal e quantidade de dados utilizados neste trabalho.

Tipo de dado	Registros de Fauna		Necrópsias			% de animais	
Estado	Início	Fim	N	Início	Fim	N	Necropsiados
CE	08/03/2019	02/07/2022	807	11/04/2019	24/04/2021	17	2,1%
RN	24/12/2019	03/07/2022	837	08/01/2020	11/06/2021	110	13,1%
AL	22/10/2019	31/07/2023	1.836	29/01/2020	14/06/2023	65	3,5%
SE	02/01/2020	31/07/2023	2.951	06/01/2020	14/06/2023	698	23,7%
BA	03/01/2020	23/07/2023	971	18/01/2020	13/06/2023	249	25,6%
ES	01/01/2018	17/08/2023	10.388	01/01/2018	17/07/2023	1.538	14,8%
RJ	01/01/2018	20/08/2023	27.957	01/01/2018	10/08/2023	11.252	40,2%
SP	01/01/2018	19/08/2023	30.200	01/01/2018	19/08/2023	11.486	38,0%
PA	01/01/2018	08/08/2023	14.983	01/01/2018	22/05/2023	3.405	22,7%
SC	01/01/2018	19/08/2023	48.005	01/01/2018	18/08/2023	9.831	20,5%
Total Gera	l		138.935			38.651	27,8%

Apesar de nos últimos anos a Petrobras vir buscando uma padronização nas atividades dos diferentes PMP, cada projeto possui diferentes objetivos específicos. Isso resulta em variações na obrigatoriedade de quais organismos devem ser necropsiados. Desse modo pode-se observar uma diferença considerável no percentual de carcaças que foram necropsiadas em cada estado (TABELA 11). Para as análises globais os dados de todos os estados foram agrupados, mas nas análises espaciais os estados com percentuais baixos (< 10%) de execução de necrópsias não foram utilizados.

Os dados de necrópsias são registrados no SIMBA em um formulário de "exame anatomopatológico", que apresenta um campo específico onde o necropsista pode indicar se há indícios de interação antrópica na carcaça. Dentre as opções que podem ser selecionadas, uma delas é "Interação com resíduo (lixo)". Todos os casos em que essa opção foi selecionada na ficha de necrópsia foram avaliados para buscar identificar o tipo de lixo com o qual o animal interagiu. Isso foi feito através da análise do campo "Observações" da necrópsia.

Além dos animais em que havia registro de interação com lixo, também foi avaliada a análise do trato gastrointestinal, buscando informações que mostrassem a presença de plástico ou outros resíduos. O campo para a descrição do conteúdo gastrointestinal é um campo aberto; portanto, os necropsistas podem colocar qualquer texto. Desse modo foi feita uma busca por termos que indicassem produtos de origem antrópica. A partir das descrições encontradas, o material foi categorizado em:

- a) PLÁSTICO (não identificado)
- **b)** PLÁSTICO RÍGIDO
- c) PLÁSTICO FLEXÍVEL
- **d) PESCA** (linhas, redes, petrechos)
- (e) NYLON (linha)
- (F) f) LINHA
- g) SACOLA
- h) CANUDO
- i) BEXIGA
- j) ISOPOR
- (5) k) ESPUMA
- () BORRACHA
- m) VIDRO
- n) METAL
- o) RESÍDUOS SÓLIDOS
- p) LIXO (não identificado)

Para definir animais que tiveram interação com "plástico", foram utilizados todos os animais que possuíram resíduos classificados das categorias de "a" a "k". Também foram contabilizados os casos em que o animal teve interação com mais de um tipo de plástico.

OCORRÊNCIA DE PLÁSTICO POR ESPÉCIE

TABELA 12 - Quantidade de análises de tratos gastrointestinais que detectaram presença de plástico, em animais necropsiados nos Projetos de Monitoramento de Praias (PMP) da Petrobras, com dados disponíveis no SIMBA em 20/12/2023.

Classe	Ordem	Espécie	Sem plástico	Com Plástico	Total Geral
Aves	Charadriiformes	Anous stolidus	12	0	12
Aves	Charadriiformes	Arenaria interpres	1	0	1
Aves	Charadriiformes	Calidris alba	2	0	2
Aves	Charadriiformes	Calidris fuscicollis	1	0	1
Aves	Charadriiformes	Charadrius collaris	2	0	2
Aves	Charadriiformes	Charadrius semipalmatus	2	0	2
Aves	Charadriiformes	Chroicocephalus maculipennis	2	0	2
Aves	Charadriiformes	Gygis alba	1	0	1
Aves	Charadriiformes	Haematopus palliatus	8	0	8
Aves	Charadriiformes	Himantopus melanurus	1	1	2
Aves	Charadriiformes	Larus atlanticus	1	0	1
Aves	Charadriiformes	Larus dominicanus	409	54	463
Aves	Charadriiformes	Onychoprion fuscatus	1	0	1
Aves	Charadriiformes	Pluvialis dominica	1	1	2
Aves	Charadriiformes	Rynchops niger	9	0	9
Aves	Charadriiformes	Stercorarius antarcticus	1	0	1
Aves	Charadriiformes	Stercorarius longicaudus	2	1	3
Aves	Charadriiformes	Stercorarius maccormicki	2	1	3
Aves	Charadriiformes	Stercorarius parasiticus	4	0	4
Aves	Charadriiformes	Sterna hirundinacea	32	1	33
Aves	Charadriiformes	Sterna hirundo	30	0	30
Aves	Charadriiformes	Sterna trudeaui	2	0	2

Classe	Ordem	Espécie	Sem plástico	Com Plástico	Total Geral
Aves	Charadriiformes	Thalasseus acuflavidus	64	1	65
Aves	Charadriiformes	Thalasseus maximus	14	0	14
Aves	Charadriiformes	Tringa melanoleuca		1	1
Aves	Gruiformes	Gallinula chloropus	1	0	1
Aves	Pelecaniformes	Ardea alba	33	0	33
Aves	Pelecaniformes	Ardea cocoi	11	0	11
Aves	Pelecaniformes	Bubulcus ibis	2	0	2
Aves	Pelecaniformes	Butorides striata	1	0	1
Aves	Pelecaniformes	Egretta thula	8	0	8
Aves	Pelecaniformes	Nyctanassa violacea	3	0	3
Aves	Pelecaniformes	Nycticorax nycticorax	31	3	34
Aves	Pelecaniformes	Phimosus infuscatus	6	5	11
Aves	Phaethontiformes	Phaethon aethereus	2	0	2
Aves	Podicipediformes	Podilymbus podiceps	2	0	2
Aves	Procellariiformes	Calonectris diomedea	29	13	42
Aves	Procellariiformes	Calonectris diomedea borealis	36	18	54
Aves	Procellariiformes	Calonectris diomedea diomedea		1	1
Aves	Procellariiformes	Calonectris edwardsii		1	1
Aves	Procellariiformes	Daption capense	2	6	8
Aves	Procellariiformes	Fregetta grallaria	1	0	1
Aves	Procellariiformes	Fulmarus glacialoides	6	5	11
Aves	Procellariiformes	Halobaena caerulea	2	0	2
Aves	Procellariiformes	Macronectes giganteus	14	15	29
Aves	Procellariiformes	Macronectes halli	1	1	2
Aves	Procellariiformes	Oceanites oceanicus	14	9	23

AvesProcellariiformesPachyptila belcheri20AvesProcellariiformesPachyptila desolata87AvesProcellariiformesPachyptila vittata11AvesProcellariiformesProcellaria aequinoctialis10787AvesProcellariiformesProcellaria conspicillata20AvesProcellariiformesPterodroma incerta80AvesProcellariiformesPterodroma mollis246AvesProcellariiformesArdenna (Puffinus) gravis5973AvesProcellariiformesArdenna (Puffinus) griseus1313AvesProcellariiformesPuffinus puffinus431158AvesProcellariiformesThalassarche chlororhynchos758AvesProcellariiformesThalassarche melanophris627AvesSphenisciformesSpheniscus magellanicus1.303367AvesSuliformesFregata magnificens25215AvesSuliformesPhalacrocorax brasilianus32313AvesSuliformesSula dactylatra50AvesSuliformesSula eucogaster50143AvesSuliformesSula sula10MammaliaCarnivoraArctocephalus australis787MammaliaCarnivoraArctocephalus tropicalis92MammaliaCarnivoraLobodon carcinophaga10 <t< th=""><th>Total Geral</th><th>Com Plástico</th><th>Sem plástico</th><th>Espécie</th><th>Ordem</th><th>Classe</th></t<>	Total Geral	Com Plástico	Sem plástico	Espécie	Ordem	Classe
AvesProcellariiformesPachyptila vittata11AvesProcellariiformesProcellaria aequinoctialis10787AvesProcellariiformesProcellaria conspicillata20AvesProcellariiformesPterodroma incerta80AvesProcellariiformesPterodroma mollis246AvesProcellariiformesArdenna (Puffinus) gravis5973AvesProcellariiformesArdenna (Puffinus) griseus1313AvesProcellariiformesPuffinus puffinus431158AvesProcellariiformesThalassarche chlororhynchos758AvesProcellariiformesThalassarche melanophris627AvesSphenisciformesSpheniscus magellanicus1.303367AvesSuliformesFregata magnificens25215AvesSuliformesPhalacrocorax brasilianus32313AvesSuliformesSula dactylatra50AvesSuliformesSula leucogaster50143AvesSuliformesSula sula10MammaliaCarnivoraArctocephalus australis787MammaliaCarnivoraArctocephalus tropicalis92MammaliaCarnivoraLobdon carcinophaga10	2	0	2	Pachyptila belcheri	Procellariiformes	Aves
AvesProcellariiformesProcellaria aequinoctialis10787AvesProcellariiformesProcellaria conspicillata20AvesProcellariiformesPterodroma incerta80AvesProcellariiformesPterodroma mollis246AvesProcellariiformesArdenna (Puffinus) gravis5973AvesProcellariiformesArdenna (Puffinus) griseus1313AvesProcellariiformesPuffinus puffinus431158AvesProcellariiformesThalassarche chlororhynchos758AvesProcellariiformesThalassarche melanophris627AvesSphenisciformesSpheniscus magellanicus1.303367AvesSuliformesFregata magnificens25215AvesSuliformesPhalacrocorax brasilianus32313AvesSuliformesSula dactylatra50AvesSuliformesSula leucogaster50143AvesSuliformesSula sula10MammaliaCarnivoraArctocephalus australis787MammaliaCarnivoraArctocephalus tropicalis92MammaliaCarnivoraArctocephalus tropicalis92MammaliaCarnivoraLobodon carcinophaga10	15	7	8	Pachyptila desolata	Procellariiformes	Aves
AvesProcellariiformesProcellaria conspicillata20AvesProcellariiformesPterodroma incerta80AvesProcellariiformesPterodroma mollis246AvesProcellariiformesArdenna (Puffinus) gravis5973AvesProcellariiformesArdenna (Puffinus) griseus1313AvesProcellariiformesPuffinus puffinus431158AvesProcellariiformesThalassarche chlororhynchos758AvesProcellariiformesThalassarche melanophris627AvesSphenisciformesSpheniscus magellanicus1,303367AvesSuliformesFregata magnificens25215AvesSuliformesPhalacrocorax brasilianus32313AvesSuliformesSula dactylatra50AvesSuliformesSula leucogaster50143AvesSuliformesSula sula10MammaliaCarnivoraArctocephalus australis787MammaliaCarnivoraArctocephalus tropicalis92MammaliaCarnivoraArctocephalus tropicalis92MammaliaCarnivoraArctocephalus tropicalis92	2	1	1	Pachyptila vittata	Procellariiformes	Aves
AvesProcellariiformesPterodroma incerta80AvesProcellariiformesPterodroma mollis246AvesProcellariiformesArdenna (Puffinus) gravis5973AvesProcellariiformesArdenna (Puffinus) griseus1313AvesProcellariiformesPuffinus puffinus431158AvesProcellariiformesThalassarche chlororhynchos758AvesProcellariiformesThalassarche melanophris627AvesSphenisciformesSpheniscus magellanicus1.303367AvesSuliformesFregata magnificens25215AvesSuliformesPhalacrocorax brasilianus32313AvesSuliformesSula dactylatra50AvesSuliformesSula leucogaster50143AvesSuliformesSula sula10MammaliaCarnivoraArctocephalus australis787MammaliaCarnivoraArctocephalus tropicalis92MammaliaCarnivoraArctocephalus tropicalis92MammaliaCarnivoraLobodon carcinophaga10	194	87	107	Procellaria aequinoctialis	Procellariiformes	Aves
AvesProcellariiformesPterodroma mollis246AvesProcellariiformesArdenna (Puffinus) gravis5973AvesProcellariiformesArdenna (Puffinus) griseus1313AvesProcellariiformesPuffinus puffinus431158AvesProcellariiformesThalassarche chlororhynchos758AvesProcellariiformesThalassarche melanophris627AvesSphenisciformesSpheniscus magellanicus1.303367AvesSuliformesFregata magnificens25215AvesSuliformesPhalacrocorax brasilianus32313AvesSuliformesSula dactylatra50AvesSuliformesSula leucogaster50143AvesSuliformesSula sula10MammaliaCarnivoraArctocephalus australis787MammaliaCarnivoraArctocephalus tropicalis92MammaliaCarnivoraArctocephalus tropicalis92MammaliaCarnivoraLobodon carcinophaga10	2	0	2	Procellaria conspicillata	Procellariiformes	Aves
AvesProcellariiformesArdenna (Puffinus) gravis5973AvesProcellariiformesArdenna (Puffinus) griseus1313AvesProcellariiformesPuffinus puffinus431158AvesProcellariiformesThalassarche chlororhynchos758AvesProcellariiformesThalassarche melanophris627AvesSphenisciformesSpheniscus magellanicus1.303367AvesSuliformesFregata magnificens25215AvesSuliformesPhalacrocorax brasilianus32313AvesSuliformesSula dactylatra50AvesSuliformesSula leucogaster50143AvesSuliformesSula sula10MammaliaCarnivoraArctocephalus australis787MammaliaCarnivoraArctocephalus gazella20MammaliaCarnivoraArctocephalus tropicalis92MammaliaCarnivoraLobodon carcinophaga10	8	0	8	Pterodroma incerta	Procellariiformes	Aves
AvesProcellariiformesArdenna (Puffinus) griseus1313AvesProcellariiformesPuffinus puffinus431158AvesProcellariiformesThalassarche chlororhynchos758AvesProcellariiformesThalassarche melanophris627AvesSphenisciformesSpheniscus magellanicus1.303367AvesSuliformesFregata magnificens25215AvesSuliformesPhalacrocorax brasilianus32313AvesSuliformesSula dactylatra50AvesSuliformesSula leucogaster50143AvesSuliformesSula sula10MammaliaCarnivoraArctocephalus australis787MammaliaCarnivoraArctocephalus gazella20MammaliaCarnivoraArctocephalus tropicalis92MammaliaCarnivoraLobodon carcinophaga10	30	6	24	Pterodroma mollis	Procellariiformes	Aves
AvesProcellariiformesPuffinus puffinus431158AvesProcellariiformesThalassarche chlororhynchos758AvesProcellariiformesThalassarche melanophris627AvesSphenisciformesSpheniscus magellanicus1.303367AvesSuliformesFregata magnificens25215AvesSuliformesPhalacrocorax brasilianus32313AvesSuliformesSula dactylatra50AvesSuliformesSula leucogaster50143AvesSuliformesSula sula10MammaliaCarnivoraArctocephalus australis787MammaliaCarnivoraArctocephalus gazella20MammaliaCarnivoraArctocephalus tropicalis92MammaliaCarnivoraLobodon carcinophaga10	132	73	59	Ardenna (Puffinus) gravis	Procellariiformes	Aves
AvesProcellariiformesThalassarche chlororhynchos758AvesProcellariiformesThalassarche melanophris627AvesSphenisciformesSpheniscus magellanicus1.303367AvesSuliformesFregata magnificens25215AvesSuliformesPhalacrocorax brasilianus32313AvesSuliformesSula dactylatra50AvesSuliformesSula leucogaster50143AvesSuliformesSula sula10MammaliaCarnivoraArctocephalus australis787MammaliaCarnivoraArctocephalus gazella20MammaliaCarnivoraArctocephalus tropicalis92MammaliaCarnivoraLobodon carcinophaga10	26	13	13	Ardenna (Puffinus) griseus	Procellariiformes	Aves
AvesProcellariiformesThalassarche melanophris627AvesSphenisciformesSpheniscus magellanicus1.303367AvesSuliformesFregata magnificens25215AvesSuliformesPhalacrocorax brasilianus32313AvesSuliformesSula dactylatra50AvesSuliformesSula leucogaster50143AvesSuliformesSula sula10MammaliaCarnivoraArctocephalus australis787MammaliaCarnivoraArctocephalus gazella20MammaliaCarnivoraArctocephalus tropicalis92MammaliaCarnivoraLobodon carcinophaga10	589	158	431	Puffinus puffinus	Procellariiformes	Aves
AvesSphenisciformesSpheniscus magellanicus1.303367AvesSuliformesFregata magnificens25215AvesSuliformesPhalacrocorax brasilianus32313AvesSuliformesSula dactylatra50AvesSuliformesSula leucogaster50143AvesSuliformesSula sula10MammaliaCarnivoraArctocephalus australis787MammaliaCarnivoraArctocephalus gazella20MammaliaCarnivoraArctocephalus tropicalis92MammaliaCarnivoraLobodon carcinophaga10	83	8	75	Thalassarche chlororhynchos	Procellariiformes	Aves
AvesSuliformesFregata magnificens25215AvesSuliformesPhalacrocorax brasilianus32313AvesSuliformesSula dactylatra50AvesSuliformesSula leucogaster50143AvesSuliformesSula sula10MammaliaCarnivoraArctocephalus australis787MammaliaCarnivoraArctocephalus gazella20MammaliaCarnivoraArctocephalus tropicalis92MammaliaCarnivoraLobodon carcinophaga10	69	7	62	Thalassarche melanophris	Procellariiformes	Aves
AvesSuliformesPhalacrocorax brasilianus32313AvesSuliformesSula dactylatra50AvesSuliformesSula leucogaster50143AvesSuliformesSula sula10MammaliaCarnivoraArctocephalus australis787MammaliaCarnivoraArctocephalus gazella20MammaliaCarnivoraArctocephalus tropicalis92MammaliaCarnivoraLobodon carcinophaga10	1.670	367	1.303	Spheniscus magellanicus	Sphenisciformes	Aves
AvesSuliformesSula dactylatra50AvesSuliformesSula leucogaster50143AvesSuliformesSula sula10MammaliaCarnivoraArctocephalus australis787MammaliaCarnivoraArctocephalus gazella20MammaliaCarnivoraArctocephalus tropicalis92MammaliaCarnivoraLobodon carcinophaga10	267	15	252	Fregata magnificens	Suliformes	Aves
AvesSuliformesSula leucogaster50143AvesSuliformesSula sula10MammaliaCarnivoraArctocephalus australis787MammaliaCarnivoraArctocephalus gazella20MammaliaCarnivoraArctocephalus tropicalis92MammaliaCarnivoraLobodon carcinophaga10	336	13	323	Phalacrocorax brasilianus	Suliformes	Aves
AvesSuliformesSula sula10MammaliaCarnivoraArctocephalus australis787MammaliaCarnivoraArctocephalus gazella20MammaliaCarnivoraArctocephalus tropicalis92MammaliaCarnivoraLobodon carcinophaga10	5	0	5	Sula dactylatra	Suliformes	Aves
MammaliaCarnivoraArctocephalus australis787MammaliaCarnivoraArctocephalus gazella20MammaliaCarnivoraArctocephalus tropicalis92MammaliaCarnivoraLobodon carcinophaga10	544	43	501	Sula leucogaster	Suliformes	Aves
MammaliaCarnivoraArctocephalus gazella20MammaliaCarnivoraArctocephalus tropicalis92MammaliaCarnivoraLobodon carcinophaga10	1	0	1	Sula sula	Suliformes	Aves
MammaliaCarnivoraArctocephalus tropicalis92MammaliaCarnivoraLobodon carcinophaga10	85	7	78	Arctocephalus australis	Carnivora	Mammalia
Mammalia Carnivora Lobodon carcinophaga 1 0	2	0	2	Arctocephalus gazella	Carnivora	Mammalia
	11	2	9	Arctocephalus tropicalis	Carnivora	Mammalia
Mammalia Carnivora Lontra longicaudis 2 0	1	0	1	Lobodon carcinophaga	Carnivora	Mammalia
	2	0	2	Lontra longicaudis	Carnivora	Mammalia
Mammalia Carnivora Otaria flavescens 15 4	19	4	15	Otaria flavescens	Carnivora	Mammalia
Mammalia Cetacea Balaenoptera acutorostrata 4 0	4	0	4	Balaenoptera acutorostrata	Cetacea	Mammalia
Mammalia Cetacea Balaenoptera brydei 2 0	2	0	2	Balaenoptera brydei	Cetacea	Mammalia

Classe	Ordem	Espécie	Sem plástico		
Mammalia	Cetacea	Balaenoptera edeni	1	0	1
Mammalia	Cetacea	Balaenoptera physalus		1	1
Mammalia	Cetacea	Delphinus delphis	2	0	2
Mammalia	Cetacea	Feresa attenuata	1	0	1
Mammalia	Cetacea	Globicephala macrorhynchus	2	1	3
Mammalia	Cetacea	Grampus griseus	1	0	1
Mammalia	Cetacea	Kogia breviceps	6	1	7
Mammalia	Cetacea	Kogia sima	3	0	3
Mammalia	Cetacea	Lagenodelphis hosei	2	0	2
Mammalia	Cetacea	Megaptera novaeangliae	33	10	43
Mammalia	Cetacea	Peponocephala electra	1	0	1
Mammalia	Cetacea	Physeter macrocephalus	1	0	1
Mammalia	Cetacea	Pontoporia blainvillei	488	55	543
Mammalia	Cetacea	Pseudorca crassidens	1	0	1
Mammalia	Cetacea	Sotalia guianensis	443	8	451
Mammalia	Cetacea	Stenella coeruleoalba	2	0	2
Mammalia	Cetacea	Stenella frontalis	50	3	53
Mammalia	Cetacea	Stenella longirostris	1	0	1
Mammalia	Cetacea	Steno bredanensis	24	2	26
Mammalia	Cetacea	Tursiops truncatus	60	3	63
Mammalia	Cetacea	Tursiops truncatus gephyreus	4	0	4
Reptilia	Testudines	Caretta caretta	311	114	425
Reptilia	Testudines	Chelonia mydas	3.658	1.590	5.248
Reptilia	Testudines	Dermochelys coriacea	26	21	47
Reptilia	Testudines	Eretmochelys imbricata	29	18	47
Reptilia	Testudines	Lepidochelys olivacea	74	12	86
To	otal Geral		9.323	2.788	12.111

LISTA DE TABELAS

amazônicos brasileiros. N = número de indivíduos analisados, Fibras = quantidade de fibras encontradas, Máximo = quantidade máxima por indivíduo analisado,	33
Média = média de partícula por espécie analisada. TABELA 2 - Número de animais registrados e de necropsias realizadas pelos PMP, indicando a quantidade de casos em que houve registro de interações antrópicas e da causa de morte ser de origem antrópica. Valores percentuais se referem ao total de necropsias por classe.	41
TABELA 3 – Tipos de interação antrópica detectados durante as necrópsias de animais recolhidos pelos Projetos de Monitoramento de Praias (PMP) da Petrobras, com dados disponíveis no SIMBA em 20/12/2023	42
TABELA 4 – Quantidade de animais em que foi realizada a triagem do conteúdo presente no trato gastrointestinal (TGI), registrados nos Projetos de Monitoramento de Praias (PMP) da Petrobras, com dados disponíveis no SIMBA em 20/12/2023	42
TABELA 5 – Tipos de resíduos de origem antrópica observados durante as triagens de conteúdo gastrointestinal de animais registrados nos Projetos de Monitoramento de Praias (PMP) da Petrobras, com dados disponíveis no SIMBA em 20/12/2023. Um animal pode apresentar mais de um tipo de resíduo	43
TABELA 6 – Quantidade de animais que ingeriram plástico, de acordo com o tipo do material ingerido, em animais necropsiados nos Projetos de Monitoramento de Praias (PMP) da Petrobras, com dados disponíveis no SIMBA em 20/12/2023. Um animal pode apresentar resíduos plásticos de mais de um tipo	44
TABELA 7 – Quantidade de ocorrências, necrópsias, indícios de interação antrópica e animais com causa de morte antropogênica, de acordo com o estado onde foram registrados. Estados ordenados de sul para norte. Percentuais de interações antrópicas e causa de morte se referem aos animais necropsiados.	46
TABELA 8 – Sistema identificado como principal lesão ligada à causa de morte dos animais necropsiados nos Projetos de Monitoramento de Praias (PMP) da Petrobras, entre 2018 e 2022, separados de acordo com a presença ou ausência de plástico no trato gastrointestinal. Não foram incluídos animais com causa de morte indeterminada	49
TABELA 9 - Variáveis e dados utilizados para calcular a contribuição do Brasil para a poluição marinha por plásticos	66
TABELA 10 - Resultado da contribuição do Brasil para a poluição por plástico no oceano, em 2010 e em 2018	69
TABELA 11 - Abrangência temporal e quantidade de dados utilizados neste trabalho	71
TABELA 12 – Quantidade de análises de tratos gastrointestinais que detectaram presença de plástico, em animais necropsiados nos Projetos de Monitoramento de Praias (PMP) da Petrobras, com dados disponíveis no SIMBA em 20/12/2023	

LISTA DE FIGURAS

FIGURA 1 -	Principais fontes e meios de transporte do resíduo plástico de origem terrestre até o mar	21
FIGURA 2 -	Quantidade de resíduos plásticos que o Brasil despeja no oceano anualmente e percentual de itens plásticos encontrados em limpezas de praia	22
FIGURA 3 -	Esquema simplificado ilustrando os potenciais impactos da exposição a microplásticos em diferentes níveis sucessivos de organização biológica (Adaptado de Galloway et al., 2017)	26
FIGURA 4 -	Quantidade de estudos sobre microplásticos em moluscos por país, suas concentrações médias (a) e máximas (b) em itens g-1, considerando 102 estudos e 35 países	38
FIGURA 5 -	O impacto do lixo marinho na vida selvagem: consumo de plástico por aves,	44
FIGURA 6 -	Quantidade de necrópsias realizadas pelos Projetos de Monitoramento de Praias (PMP) da Petrobras entre 2018 e 2022 e frequência relativa da incidência de lixo no trato gastrointestinal	47
FIGURA 7 -	Quantidade de necrópsias realizadas anualmente pelos Projetos de Monitoramento de Praias (PMP) da Petrobras entre 2018 e 2022, e frequência relativa da incidência de lixo nas três classes de organismos: aves, mamíferos e répteis (tartarugas)	47

OCEANA Proteger os oceanos e alimentar o mundo

ISBN: 978-65-980818-5-0

DOI: 10.5281/zenodo.13931989